
© 2000 Scenix Semiconductor, Inc. All rights reserved. - 1 -

Scenix™ and the Scenix logo are trademarks of Scenix Semiconductor, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 35
May 8, 2000
SX-Stack: Internet Protocols
Implementation
1.0 INTRODUCTION

A complete Internet protocol stack demo has been im-
plemented, called the SX-Stack. It runs on a demo
board that comes with the evaluation kit (EPAK-
TCP/PPP01-xx). The User’s Guide (literature number
SXL-UG01-xx) included in the evaluation kit gives de-
tailed instructions on how to set up and run the demo
board connected to a PC.

The SX-Stack demo program combines five different
demonstrations:

• UDP Demo

• iSX Web Server Demo—responds to requests to
view web pages stored in an EEPROM.

• eSX E-mail Appliance Demo—sends and receives
e-mail.

• Java Sprinkler Demo—not discussed in this manu-
al.

• A/D Converter Demo—not discussed in this manu-
al.

The demo is selected by commenting out various as-
sembler directives in the source code. At the beginning
of the source code, there are three areas which you
may need to change before compiling the program:

• Target SX—select the processor type. For the demo
board, the line which says “SX48_52” must not be
commented out.

• Assembler Used—select the assembler. For the
Parallax SX-Key assembler, the line which says
“SX_Key” must not be commented out. If you are
using the SASM assembler, this line must be com-
mented out. (SASM is the default.)

• Options—select the demo to be run by commenting
out the defines for the other demos. These demos
are mutually exclusive (e.g., you can’t be sending
and receiving e-mail simultaneously). The defines
are listed in Table 1-1.

Table 1-1. Defines For Running Demos

Demos Required Defines

UDP UDP, UDPDEMO

iSX Web Server TCP, HTTPDEMO

eSX E-Mail Appliance (sending) TCP, SMTPDEMO

eSX E-Mail Appliance (receiving) TCP, POP3DEMO, POP3DEBUG
www.scenix.com

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

SX-Stack: Internet Protocols Implementation AN35

2.0 PROGRAM STRUCTURE

Table 2-1 describes the organization of the SX-Stack
demo program. Mutually exclusive sections of code are
placed together, to accommodate the page structure of
program memory. The POP3 and UART Virtual Periph-
eral code is broken into several chunks, to fit it into
available program memory. Most programs for the SX

communications controllers are not nearly so complex
as this one, so they won’t usually require breaking up
the code of a Virtual Peripheral.

Because the only physical layer interface is a UART Vir-
tual Peripheral, the ISR code is simply the ISR of the
UART VP.

Table 2-1. Structure of the SX-Stack Demo Program

Section Description

defines Used to specify the target SX, assembler used, and options, as
described in Section 1.0.

constant declarations For all modules.

global variable
declarations

For all modules.

jump to ISR When an interrupt occurs, execution begins at this location in
program memory (address = 0). The instruction at this location
then jumps to the ISR.

jump table Jumps to the entry points for all Virtual Peripheral API calls.

UART Virtual Peripheral Code for GetByte , SendByte , and SerialInit .

PPP Virtual Peripheral Code for PPPOpen, PPPRxData, PPPInit , PPPSendConfReq ,
PPPStartIPPacket , PPPSendTermReq, PPPSendPacket ,
PPPXxFCSInit , PPPCheckFCS, PPPFCSData, PPPReceive ,
PPPClosePacket , PPPClose , PPPSendCodeReject ,
PPPSendConfAck , PPPSendConfRej ,
PPPSendPartialPacket , and ModemConnect .

POP3 Virtual Peripheral Code for AppInit .

IP Virtual Peripheral Code for IPStartPacket , IPCheckSum , IPRxHeader , and
IPReceivePacket .

UDP Virtual Peripheral Code for UDPStartPacket and UDPRxHeader.

TCP Virtual Peripheral Code for TCPCompare32, TCPPassiveOpen , TCPActiveOpen ,
TCPClose , TCPRxHeader, TCPSendEmptyHeader ,
TCPSendHeader , TCPClosePacket , TCPProcessPacket ,
TCPTransmit , TCPSendSyn, TCPSendAck, TCPSendFin ,
TCPSendReset , TCPInitChecksum , TCPChecksum,
TCPTxByte , TCPAddRCV_NXT, and TCPAddSND_NXT.

POP3 Virtual Peripheral Code for get_tens , get_hundreds , and times_ten .

EEPROM File System
Virtual Peripheral

Code for E2Start , E2Stop , E2WriteToRead , E2Write ,
E2ReadAck , E2ReadNotAck , E2DelaySCLLow ,
E2DelaySCLHigh , E2WriteStart , E2WriteData ,
E2WriteComplete , E2ReadStart , E2ReadData ,
E2ReadComplete , E2OpenFile , E2CloseFile , and
E2ReadFile .

HTTPimplementation of
calls required by TCP
Virtual Peripheral API

Code for AppInit , AppBytesToSend , AppPacketOK ,
AppPacketBad , AppBytesAvailable , AppTxByte ,
AppRxByte , AppNak, and AppAck .

SMTPimplementation of
calls required by TCP
Virtual Peripheral API

Code for AppPacketOK , AppInit , AppBytesToSend ,
AppBytesAvailable , AppTxByte , AppRxByte , AppNak,
AppAck , and AppPacketBad . The AppPacketOK code contains
the packet transmitted in response to a ping.

POP3 implementation of
calls required by TCP
Virtual Peripheral API

Code for AppPacketOK , AppRxByte , AppBytesToSend ,
AppBytesAvailable , and AppTxByte .

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

AN35 SX-Stack: Internet Protocols Implementation

3.0 PROGRAM OPERATION

The operation of the SX-Stack demo program is very
similar for each of the demos. Figure 3-1 is a state dia-
gram for the operation of the demo program.

One of the first calls made by the demo program is to
PPPOpen, to open up a PPP connection to the host com-
puter. If PPPOpen fails, the program continues to loop on
PPPOpen until a connection is made.

The iSX web server calls AppInit before entering the
main loop, and again on every pass through the loop.
The eSX e-mail appliance in POP3 mode only calls Ap-

pInit once, before entering the main loop. In SMTP
mode, it only calls AppInit when it receives an ICMP
packet, which it assumes to be a ping packet. (ICMP
packets are used for diagnostic messages, such as ping
packets. ICMP packets can be distinguished from TCP
and UDP packets in the protocol number field of the IP
header.)

If a TCP packet is received, TCPProcessPacket is
called. This routine implements the TCP state machine.
TCPProcessPacket may return to the main loop or call
other routines, depending on the type of the TCP pack-
et. For example, if a SYN packet is received, TCPPro-

cessPacket updates its state machine and returns to
the main loop. If an ACK packet is received, AppAck is
called to inform the application that an acknowledge-
ment of a previous data transmission has occurred. If
the packet is data, AppBytesAvailable is called to
warn the application it is about to receive some number
of bytes. AppRxData is called once for each byte re-
ceived.

After the packet is received, AppPacketOK or AppPack-

etBad are called, depending on whether the packet
passed its frame check sequence (FCS). The applica-
tion doesn’t know whether the data it is receiving is valid
until after the FCS has been verified, so it must not
make any changes that cannot be undone until after Ap-

pPacketOK is called. If AppPacketBad is called, the re-
ceived data is discarded and the application prepares to
receive another transmission attempt.

Application Code Includes the Main Loop.

UART Virtual Peripheral Code for PhyRxByte , PhyTxByte , and PhyRxTest .

POP3 Virtual Peripheral Code for AppNak, AppAck , and AppPacketBad .

ISR ISR code for the UART Virtual Peripheral.

Table 2-1. Structure of the SX-Stack Demo Program (Continued)

Section Description

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

SX-Stack: Internet Protocols Implementation AN35

Figure 3-1. SX-Stack Demo Program State Diagram

TCPProcessPacket

499-004.eps

Main

Loop
TCPTransmit

AppNak

AppPacketOKAppBytesAvailable

AppBytesToSend

AppPacketBad

AppInit AppTxData

AppAck

AppRxData

AppTxData

AppNak

Start

Time-Out

Waiting for ACK

Data To Send

Re-Request

The Data

Actually Send

The Data

If Packet

is Data

If FCS

Passed

If Packet

is ACK

If FCS

Failed

AppInit

AppTxData

PPPOpen

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 5 - www.scenix.com

AN35 SX-Stack: Internet Protocols Implementation

Periodically, the main loop calls TCPTransmit to handle
any transmit requests from the application. If TCPTrans-

mit has timed out waiting for an acknowledgement of a
previous transmission, AppNak is called to inform the
application that the transmission has failed and must be
retried. AppTxData is called once for each byte of the re-
transmission attempt. There can be only one outstand-
ing request to transmit a packet.

TCPTransmit calls AppBytesToSend to check for new
transmit requests. If there is no data to be transmitted, it
just returns. If there is data, AppTxData is called to get
the data from the application. The TCP header is re-
quired to include a checksum of the data. Because
there isn’t enough space in RAM to buffer the whole
packet, the application is called to produce the data
twice. On the first pass, the checksum is computed and
saved. Then, AppNak is called to force the application to
produce the data again. On the second pass, the packet
is transmitted with the saved checksum. The saved
checksum is also used if the packet must be retransmit-
ted because of a time-out while waiting for acknowl-
edgement.

4.0 IP Addresses

The IP address of the SX board is specified by constant
declarations as 192.168.11.1 in the “IP constants” sec-
tion. For the eSX demos, the SX board attempts to con-
nect to a server at address 192.168.11.2. This address
is specified by constant declarations in either the
“SMTP constants” or “POP3 constants” sections.

5.0 iSX Web Server Demo

The iSX web server demo is used with a web browser
running on a PC to demonstrate the HTTP protocol.
HTTP defines a client-server relationship, in which all
actions are initiated from the client side. The iSX server
waits for an HTTP client to make a GET request, then
responds with either the requested file or a 404 error
message indicating that the requested file was not
found.

Figure 5-1. HTTP Client-Server Interaction

499-006.eps

Web Browser

(Client)
iSX Application

(Server)

GET Request

Requested File or

404 Error Message

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 6 - www.scenix.com

SX-Stack: Internet Protocols Implementation AN35

A GET request consists of the GET keyword, a space
character, a Uniform Resource Identifier (URI), another
space character, and the HTTP version number. An ex-
ample is shown below:

GET /index.html HTTP/1.0

The iSX server looks for the first letter of the keyword,
and it ignores any request that doesn’t begin with “G”.
Then, it looks for the space characters and captures the
URI. The version number and any following information
such as request modifiers are ignored.

Only one response is sent for each GET request. An
HTML file may reference other files, such as images
embedded in the web page. In this case, the web brows-
er may make additional GET requests to download
those files.

The iSX server uses a serial EEPROM file manager Vir-
tual Peripheral to access web pages stored in an exter-
nal memory chip. A hashing function is used to look up
the requested URI in the file system. If the web page is
not found, a page containing the standard 404 error
message is transmitted.

Text is stored as a sequence of ASCII bytes, and GIF
images are stored as binary data. If the file exceeds the
maximum packet size, it is transmitted as a series of
maximum-size packets, followed by a packet that may
be smaller than the maximum size as shown in
Figure 5-2.

Figure 5-2. EEPROM File System

499-005.eps

Packet Start Current Byte

Maximum Packet Size Maximum Packet Size

EEPROM File

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 7 - www.scenix.com

AN35 SX-Stack: Internet Protocols Implementation

Two pointers are used to access the file. Initially, both
pointers reference the beginning of the file. As each
byte is read, the Current Byte pointer is incremented.
After the first packet is transmitted, the pointers will ad-
dress the locations shown in Figure 5-2.

If AppNak is called after the packet is transmitted, the
packet was not acknowledged, and the Current Byte
pointer is set equal to the Packet Start pointer. If AppAck

is called, the transmission was successful, and the
Packet Start pointer is set equal to the Current Byte
pointer. The second packet can then be transmitted.

The maximum packet size that can be transmitted is
256 bytes, plus the header size. This limitation is im-
posed by the use of 8-bit pointers. The code could be
rewritten to use larger pointers, however the only advan-
tage of doing so would be increased throughput. Em-
bedded Internet applications using the SX communica-
tions controllers typically handle short messages that
are not likely to be throughput-limited.

6.0 eSX E-Mail Appliance
6.1 SMTP DEMO

The eSX SMTP demo is an SMTP client, with the EServ
program running on a PC acting as the SMTP server.
The SMTP demo transmits a message in response to
receiving a ping packet. A ping packet is an ICMP echo
message. Normally, an ICMP-compliant host responds
to a ping packet with an ICMP echo reply message. But
for this demonstration, the response to a ping packet (or
any other kind of ICMP message) is to send an e-mail
message in addition to the echo reply message.

The client-server interaction proceeds in lock-step, with
each command from the client generating a reply from
the server, as shown in Figure 6-1.

Figure 6-1. SMTP Client-Server Interaction

499-007.eps

EServ

(Server)
eSX SMTP Application

(Client)

HELO Command

HELO Reply

MAIL Command

MAIL Reply

RCPT Command

RCPT Reply

DATA Command

Message Reply

QUIT Command

QUIT Reply

Message Content

DATA Reply

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 8 - www.scenix.com

SX-Stack: Internet Protocols Implementation AN35

Replies from the server begin with three-digit code num-
bers. These numbers completely define the reply, but
they are usually followed with descriptive text for the
benefit of anyone viewing the message traffic as raw
ASCII text. If the first digit of the code number is 2 or 3,
the command was accepted. Otherwise, an error oc-
curred and the transmission is aborted.

As commands are issued by the client and command re-
plies are received from the host, the SMTP demo runs
through a state machine. These states are listed in the
constant declarations in the “SMTP constants” section,
and they are described in Table 6-1.

The session begins with the HELO command from the
client and a reply from the server, which serve to identi-
fy the client to the server and the server to the client. It
also confirms that both client and server are in their ini-
tial state (no transaction in progress, etc.).

The MAIL command indicates that the client is making a
request to send mail. It includes the address of the
sender of the e-mail.

The RCPT command specifies address of the recipient
of the e-mail. This command may be repeated to specify
multiple recipients, however the SMTP demo only sends
to one recipient.

The DATA command is used to specify the message
content. After receiving a reply to the DATA command,
the client sends several lines of text. The text prior to the
first blank line is the header of the e-mail, which shows
the sender’s e-mail address, the recipient’s e-mail ad-
dress, and the subject of the e-mail.

The text following the first blank line is the body of the
message. This is terminated by a line consisting only of
“.”. The line containing the “.” alone is stripped from the
actual message content passed along to the e-mail re-
cipient. The server sends a reply after receiving the line
with the “.” alone.

Finally, a QUIT command issued by the client. After re-
ceiving the QUIT reply, the client closes the connection.

If a second ping packet arrives while the STMP demo is
processing the first ping packet, the first transmission is
aborted and a second transmission is started. The stan-
dard ping command should be used with the “-n 1” op-
tion to make it send just one ping packet. By default, the
ping command sends four ping packets, which can have
various effects on the SMTP demo.

The message transmitted by the SMTP demo resides in
program memory, in the SMTP implementation of the
AppPacketOK call. You can edit this packet to change
the name of the e-mail recipient, the contents of the
message, etc. Be careful not to increase the size of the
message by more than a few bytes, or some of the code
will be pushed onto the next page of program memory.

Table 6-1. SMTP State Descriptions

Constant Name
State
Number

State Description

SMTPStateClosed 0 Initial state of the SMTP state machine.

SMTPStateHello 1 Send HELO command.

SMTPStateHelloAck 2 Receive reply to HELO command.

SMTPStateMail 3 Send MAIL command.

SMTPStateMailAck 4 Receive reply to MAIL command.

SMTPStateRcpt 5 Send RCPT command.

SMTPStateRcptAck 6 Receive reply to RCPT command.

SMTPStateData 7 Send DATA command.

SMTPStateDataAck 8 Receive reply to DATA command.

SMTPStateMesg 9 Send message content.

SMTPStateMesgAck 10 Receive reply to sending the message content.

SMTPStateQuit 11 Send QUIT command.

SMTPStateQuitAck 12 Receive reply to QUIT command.

SMTPStateFinished 13 Close connection.

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 9 - www.scenix.com

AN35 SX-Stack: Internet Protocols Implementation

7.0 POP3 Demo

The eSX POP3 demo is a POP3 client, with the EServ
program running on a PC acting as the POP3 server.
The POP3 demo waits for a PPP connection to be
made, then it retrieves its e-mail and closes the connec-
tion. The only action taken with the e-mail is to copy it to
the second serial port (i.e. the debug port) on the demo
board. After closing the connection, the POP3 demo
waits for another PPP connection.

The client-server interaction proceeds in lock-step, with
each command from the client generating a reply from
the server, as shown in Figure 7-1. All replies begin with
a status indicator, which is either “+OK” or “-ERR”. The
POP3 demo closes the connection if it receives a “-
ERR” status indicator (or any response that does not
begin with “+”).

Figure 7-1. POP3 Client-Server Interaction

499-008.eps

EServ

(Server)
eSX POP3 Application

(Client)

USER Command

+OK

PASS Command

+OK

STAT Command

+OK nn mm

RETR Command

+OK

Message Content

DELE Command

+OK

QUIT Command

QUIT Reply

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 10 - www.scenix.com

SX-Stack: Internet Protocols Implementation AN35

The USER and PASS commands are used to send a
user name and password. These are stored in program
memory in the PPP Virtual Peripheral, between the
code for the PPPFCSData and PPPReceive functions.

The reply to the STAT command reports two numbers
(shown as nn and mm in Figure 7-1): the number of
messages waiting to be downloaded and a byte count
for the messages. For each message, the client issues
a RETR command to retrieve it and a DELE command
to request deleting it.

After retrieving and requesting deletion of all its e-mail,
the POP3 demo issues a QUIT command. This indi-
cates to the server that it may delete all the messages
previously requested to be deleted. After receiving the
reply to the QUIT command, the POP3 demo closes the
connection.

© 2000 Scenix Semiconductor, Inc. All rights reserved. - 11 - www.scenix.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Scenix Semiconductor website at
www.scenix.com. The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043
E-mail: sales@scenix.com

Web site:scenix.com
Tel.: (650) 210-1500
Fax: (650) 210-8715

SX-Stack: Internet Protocols Implementation AN35

Lit #: SXL-AN35-01

	an35.pdf
	Application Note 35
	SX-Stack: Internet Protocols Implementation
	1.0� INTRODUCTION
	A complete Internet protocol stack demo has been implemented, called the SX-Stack. It runs on a d...
	The SX-Stack demo program combines five different demonstrations:
	The demo is selected by commenting out various assembler directives in the source code. At the be...
	Table�1�1. Defines For Running Demos

	2.0� Program Structure
	Table 2�1 describes the organization of the SX-Stack demo program. Mutually exclusive sections of...
	Because the only physical layer interface is a UART Virtual Peripheral, the ISR code is simply th...
	Table�2�1. Structure of the SX-Stack Demo Program�

	3.0� PROGRAM OPERATION
	The operation of the SX-Stack demo program is very similar for each of the demos. Figure�3�1 is a...
	One of the first calls made by the demo program is to PPPOpen, to open up a PPP connection to the...
	The iSX web server calls AppInit before entering the main loop, and again on every pass through t...
	If a TCP packet is received, TCPProcessPacket is called. This routine implements the TCP state ma...
	After the packet is received, AppPacketOK or AppPacketBad are called, depending on whether the pa...
	Figure�3�1. SX-Stack Demo Program State Diagram

	Periodically, the main loop calls TCPTransmit to handle any transmit requests from the applicatio...
	TCPTransmit calls AppBytesToSend to check for new transmit requests. If there is no data to be tr...

	4.0� IP Addresses
	The IP address of the SX board is specified by constant declarations as 192.168.11.1 in the “IP c...

	5.0� iSX Web Server Demo
	The iSX web server demo is used with a web browser running on a PC to demonstrate the HTTP protoc...
	Figure�5�1. HTTP Client-Server Interaction

	A GET request consists of the GET keyword, a space character, a Uniform Resource Identifier (URI)...
	The iSX server looks for the first letter of the keyword, and it ignores any request that doesn’t...
	Only one response is sent for each GET request. An HTML file may reference other files, such as i...
	The iSX server uses a serial EEPROM file manager Virtual Peripheral to access web pages stored in...
	Text is stored as a sequence of ASCII bytes, and GIF images are stored as binary data. If the fil...
	Figure�5�2. EEPROM File System

	Two pointers are used to access the file. Initially, both pointers reference the beginning of the...
	If AppNak is called after the packet is transmitted, the packet was not acknowledged, and the Cur...
	The maximum packet size that can be transmitted is 256 bytes, plus the header size. This limitati...

	6.0� eSX E-Mail Appliance
	6.1� SMTP Demo
	The eSX SMTP demo is an SMTP client, with the EServ program running on a PC acting as the SMTP se...
	The client-server interaction proceeds in lock-step, with each command from the client generating...
	Replies from the server begin with three-digit code numbers. These numbers completely define the ...
	Figure�6�1. SMTP Client-Server Interaction

	As commands are issued by the client and command replies are received from the host, the SMTP dem...
	Table�6�1. SMTP State Descriptions

	The session begins with the HELO command from the client and a reply from the server, which serve...
	The MAIL command indicates that the client is making a request to send mail. It includes the addr...
	The RCPT command specifies address of the recipient of the e-mail. This command may be repeated t...
	The DATA command is used to specify the message content. After receiving a reply to the DATA comm...
	The text following the first blank line is the body of the message. This is terminated by a line ...
	Finally, a QUIT command issued by the client. After receiving the QUIT reply, the client closes t...
	If a second ping packet arrives while the STMP demo is processing the first ping packet, the firs...
	The message transmitted by the SMTP demo resides in program memory, in the SMTP implementation of...

	7.0� POP3 Demo
	The eSX POP3 demo is a POP3 client, with the EServ program running on a PC acting as the POP3 ser...
	The client-server interaction proceeds in lock-step, with each command from the client generating...
	Figure�7�1. POP3 Client-Server Interaction

	The USER and PASS commands are used to send a user name and password. These are stored in program...
	The reply to the STAT command reports two numbers (shown as nn and mm in Figure�7�1): the number ...
	After retrieving and requesting deletion of all its e-mail, the POP3 demo issues a QUIT command. ...

	an35.pdf
	Application Note 35
	SX-Stack: Internet Protocols Implementation
	1.0� INTRODUCTION
	A complete Internet protocol stack demo has been implemented, called the SX-Stack. It runs on a d...
	The SX-Stack demo program combines five different demonstrations:
	The demo is selected by commenting out various assembler directives in the source code. At the be...
	Table�1�1. Defines For Running Demos

	2.0� Program Structure
	Table 2�1 describes the organization of the SX-Stack demo program. Mutually exclusive sections of...
	Because the only physical layer interface is a UART Virtual Peripheral, the ISR code is simply th...
	Table�2�1. Structure of the SX-Stack Demo Program�

	3.0� PROGRAM OPERATION
	The operation of the SX-Stack demo program is very similar for each of the demos. Figure�3�1 is a...
	One of the first calls made by the demo program is to PPPOpen, to open up a PPP connection to the...
	The iSX web server calls AppInit before entering the main loop, and again on every pass through t...
	If a TCP packet is received, TCPProcessPacket is called. This routine implements the TCP state ma...
	After the packet is received, AppPacketOK or AppPacketBad are called, depending on whether the pa...
	Figure�3�1. SX-Stack Demo Program State Diagram

	Periodically, the main loop calls TCPTransmit to handle any transmit requests from the applicatio...
	TCPTransmit calls AppBytesToSend to check for new transmit requests. If there is no data to be tr...

	4.0� IP Addresses
	The IP address of the SX board is specified by constant declarations as 192.168.11.1 in the “IP c...

	5.0� iSX Web Server Demo
	The iSX web server demo is used with a web browser running on a PC to demonstrate the HTTP protoc...
	Figure�5�1. HTTP Client-Server Interaction

	A GET request consists of the GET keyword, a space character, a Uniform Resource Identifier (URI)...
	The iSX server looks for the first letter of the keyword, and it ignores any request that doesn’t...
	Only one response is sent for each GET request. An HTML file may reference other files, such as i...
	The iSX server uses a serial EEPROM file manager Virtual Peripheral to access web pages stored in...
	Text is stored as a sequence of ASCII bytes, and GIF images are stored as binary data. If the fil...
	Figure�5�2. EEPROM File System

	Two pointers are used to access the file. Initially, both pointers reference the beginning of the...
	If AppNak is called after the packet is transmitted, the packet was not acknowledged, and the Cur...
	The maximum packet size that can be transmitted is 256 bytes, plus the header size. This limitati...

	6.0� eSX E-Mail Appliance
	6.1� SMTP Demo
	The eSX SMTP demo is an SMTP client, with the EServ program running on a PC acting as the SMTP se...
	The client-server interaction proceeds in lock-step, with each command from the client generating...
	Replies from the server begin with three-digit code numbers. These numbers completely define the ...
	Figure�6�1. SMTP Client-Server Interaction

	As commands are issued by the client and command replies are received from the host, the SMTP dem...
	Table�6�1. SMTP State Descriptions

	The session begins with the HELO command from the client and a reply from the server, which serve...
	The MAIL command indicates that the client is making a request to send mail. It includes the addr...
	The RCPT command specifies address of the recipient of the e-mail. This command may be repeated t...
	The DATA command is used to specify the message content. After receiving a reply to the DATA comm...
	The text following the first blank line is the body of the message. This is terminated by a line ...
	Finally, a QUIT command issued by the client. After receiving the QUIT reply, the client closes t...
	If a second ping packet arrives while the STMP demo is processing the first ping packet, the firs...
	The message transmitted by the SMTP demo resides in program memory, in the SMTP implementation of...

	7.0� POP3 Demo
	The eSX POP3 demo is a POP3 client, with the EServ program running on a PC acting as the POP3 ser...
	The client-server interaction proceeds in lock-step, with each command from the client generating...
	Figure�7�1. POP3 Client-Server Interaction

	The USER and PASS commands are used to send a user name and password. These are stored in program...
	The reply to the STAT command reports two numbers (shown as nn and mm in Figure�7�1): the number ...
	After retrieving and requesting deletion of all its e-mail, the POP3 demo issues a QUIT command. ...

