
© 2001 Ubicom, Inc. All rights reserved. - 1 - www.ubicom.com

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.

Application Note 38
June 2001

Universal Asynchronous
Transmitter/Receiver (UART)
Virtual Peripheral

1.0 Introduction
The UART Virtual Peripheral™ uses the SX communica-
tions controller to provide asynchronous serial communi-
cation through an RS-232 interface. The Virtual
Peripheral provides direct communication with any
device that has an RS-232 interface, such as a PC. The
Virtual Peripheral has been developed using the SX
Evaluation Board and has been tested using the SX-Key
interface from Parallax Inc. and the SXIDE integrated
development environment from Advanced Transdata Inc.
Unlike other MCUs that add functions in the form of addi-
tional silicon, the SX Series uses its fast execution rate to
emulate peripheral functions in software modules, called
Virtual Peripherals. On-chip hardware peripherals are
only provided for functions that cannot be performed effi-
ciently in software, such as timers and analog compara-
tors.

2.0 Program Description
The UART Virtual Peripheral is designed to operate at at
a fixed frequency driven by periodic interrupts. In the SX,
the mechanism used to generate periodic interrupts of a
fixed frequency is the RTCC timer. The UART virtual
peripheral can be run as one of several threads in a mul-
tithreaded interrupt service routine (ISR) or as part of a
single thread. The code this document describes con-
tains a multi-tasking ISR. Whenever an RTCC interrupt
occurs, an interrupt service routine (ISR) is called which
contains a multitasker for allocating CPU bandwidth
among any Virtual Peripherals which require interrupt
service. Each task is called a thread. The UART Virtual
Peripheral is split into a transmit section and a receive
section, and each of these sections is assigned to
isrThread1. In this example, the multitasker implements
16 slots for calling threads, and four of these slots are
occupied by calls to isrThread1. Because the UART Vir-
tual Peripheral only receives service on every fourth
interrupt, most of the CPU bandwidth is available for use
by other Virtual Peripherals.

2.1 Interrupt Service Routine Flowchart

Figure 2-1. Interrupt Service Routine Flowchart

 START

Decrement Txdivide
value and check if it

is 0

Transmit 1 Data bit
Decrement TX

count

Check for any bit
to be received

Receive bit

 END

NO

YES

NO

YES

© 2001 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation

3.0 Source Code Sections
The source code for the UART Virtual Peripheral is
divided into five sections:
• Equates Section: Constants that define the operation

of the UART
• Bank Section: Memory allocation for the virtual periph-

eral
• Initialization Section: Must run before the mainline ap-

plication code can run
• Interrupt Section: The most important part of the virtual

peripheral; the section of code that continually runs
(while enabled) and mimics hardware in software

• API Subroutines: Send data to and receive data from
the Virtual Peripherals. Analogous to the API routines
that would be written for accessing hardware, and
make the operation of the virtual peripheral transpar-
ent.

When integrated into an application, each section of the
source code is inserted at an appropriate location in the
main body of the application’s source code.

3.1 Equates Section
The equates section provides configuration constants,
allowing compile-time changes in the functionality of the
UARTs.

UARTRxFs, UARTTxFs: These constants define the SAM-
PLING RATE of the UART, and must be calculated by the
software programmer based on the Interrupt Frequency
and on how the ISR-Multitasker is set-up. In this ver-
sion of the source code, the UART transmitter and
receiver are both sampled at rates of 57600Hz.

Interrupt Frequency =

UARTTxFs =

By Default,
oscillator frequency = 50MHz
Interrupt frequency » 230400Hz
Number of threads calling the rs232Transmit/Receive
routines = 4
Number of ISR Threads is 16.
--
Therefore, UARTTxFs and UARTRxFs = 57600.

The multitasker rotates interrupt service among 16 slots,
and isrThread1 is called from four of these slots. In
other examples, one slot of 16 might be sufficient to ser-
vice the UART Virtual Peripheral ISR.

The pins on which the input and output data are received
and sent are also defined in this section. Port A is used
for the external interface.
The port pins are configured as follows:
• ra.0 rs232RTSpin
• ra.1 rs232CTSpin
• ra.2 rs232Rxpin
• ra.3 rs232Txpin

intPeriod = 217

UARTfs = 230400

Num = 4

IFDEF baud1200

UARTBaud = 1200

ENDIF

IFDEF baud2400

UARTBaud = 2400

ENDIF

IFDEF baud4800

UARTBaud = 4800

ENDIF

IFDEF baud9600

UARTBaud = 9600

ENDIF

IFDEF baud1920

UARTBaud = 19200

ENDIF

IFDEF baud5760

UARTBaud = 57600

ENDIF

IntPeriod
FrequencyOscillator

threadsISRofnumbertotal
Transmitrscallingthreadsnumberfrequencynterrupti 232*

© 2001 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38

3.2 Bank Section
This section describes the use of the register banks in the UART Virtual Peripheral.
Inside this bank we have different banks for RS232TX, RS232RX, and Multiplex for clarity. Although there are three
banks, because all three are declared within bank 1, bank 1 becomes the current bank whenever any of these three
banks are accessed. Using different defines for each module allows the RAM definitions to be moved around in the
future to make space for other Virtual Peripherals in the same application.

Org bank1_org

; VP: VP Begin RS232 Transmit

rs232TxBank = $;UART bank

rs232TxHigh ds 1 ;hi byte to transmit

rs232TxLow ds 1 ;low byte to transmit

rs232TxCount ds 1 ;number of bits sent

rs232TxDivide ds 1 ;x’mit timing (/16) counter

Rs232TxFlag ds 1

;VP: END

;VP : VP Begin RS232 Receive

rs232RxBank = $

rs232RxCount ds 1 ;number of bits received

rs232RxDivide ds 1 ;receive timing counter

rs232RxByte ds 1 ;buffer for incoming byte

rs232Byte ds 1 ;used by serial routines

hex ds 1

;VP: END

;VP : VP Begin Multiplexer

MultiplexBank = $

isrMultiplex ds 1

;VP: END

© 2001 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation

3.3 Initialization Section
This section provides initialization for the UART Virtual
Peripheral. This has to be included with the initialization
of all other ports and registers, prior to entering the main
loop of the application.
_bank rs232TxBank ;select rs232 bank

mov w,#UARTTxDivide ;load Txdivide

;with UART baud

;rate

mov rs232TxDivide,w

Initialization is required to send the data at the desired
baud rate. The value of UARTTxDivide specifies the num-
ber of times the thread has to be serviced before a bit is
transmitted. For example, at 9600 baud the value of
UARTTxDivide is 6 (57600/9600=6), which means that a
bit is transmitted once for every six times isrThread1 is
called.

3.4 Interrupt Section
This section is the UART Virtual Peripheral ISR. The flow
of the interrupt service routine is demonstrated by the
flowchart in Figure 2-1.
The ISR returns with a "retiw" value of -217 every 4.32
microseconds at an oscillator frequency of 50 MHz.

The events that occur on an interrupt are:
1. An interrupt occurs whenever the RTCC value rolls

from $FF to $00. The interrupt jumps to the ISR at $00.
2. In the ISR, the value of isrMultiplex is incremented.

Initially it is zero. isrMultiplex implements rotation
among the slots for threads called by the multitasker.
isrMultiplex is added to the value of the program
counter to jump into a table of jump instructions for the
threads.

3. In isrThread1, the UART Virtual Peripheral ISR is ex-
ecuted.

4. The value of rs232TxDivide is checked for zero, to
confirm whether a bit has to be transmitted in this cycle.
The value of UARTTxDivide is loaded to
rs232TxDivide.

5. The value of rs232TxCount is checked to confirm the
presence of data to be transmitted. If the value is not
zero, there is data to be transmitted, in which case the
transmit routine is executed.

6. The data stored in rs232TxHigh is pushed to the W
register.

7. The MSB of the rs232TxLow register is set, which is the
start bit. A total of ten bits are transmitted, which con-
sists of 1 start bit + 8 data bits + 1 stop bit. The receiver
has to be configured for this format.

8. The bits are rotated to the right and fed to the
rs232TxLow register.

9. Bit 6 of the rs232TxLow register is transmitted on the
TX pin.

A similar procedure is used to receive the incoming
bytes.

© 2001 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38

The source code of the interrupt service routine is shown below:

;***

org INTERRUPT_ORG ; First location in program memory.

;***

;***

;------------------------Interrupt Service Routine------------------------------

;***

; Note: The interrupt code must always originate at address $0,

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 ;and an oscillator frequency of 50MHz, this

; code runs every 4.32us.

;***

org $0

;***

;------------------------VP:VP Multitasker--------------------------------------

;***

; Virtual Peripheral Multitasker up to 16 individual threads, each running at

; the(interrupt rate/16).

; Input variable(s):isrmultiplex : variable used to choose threads

; Output variable(s): None executes the next thread

; Variable(s) affected: isr_multiplex

; Flag(s) affected: None

; Program Cycles: 9 cycles (turbo mode)

;***

 _bank MultiplexBank ;

inc isrMultiplex ; toggle interrupt rate

mov w,isrMultiplex ;

;***

; The code between the tableStart and tableEnd statements MUST be completely

; within the first half of a page. The routines it is jumping to must be in the

; same page as this table.

;***

tableStart ; Start all tables with this macro

 jmp pc+w ;

 jmp isrThread1 ;

 jmp isrThread2 ;

 jmp isrThread3 ;

 jmp isrThread4 ;

 jmp isrThread1 ;

 jmp isrThread5 ;

 jmp isrThread6 ;

 jmp isrThread7 ;

 jmp isrThread1 ;

 jmp isrThread8 ;

 jmp isrThread9 ;

 jmp isrThread10 ;

 jmp isrThread1 ;

 jmp isrThread11 ;

 jmp isrThread12 ;

 jmp isrThread13 ;

tableEnd ; End all tables with this macro.

© 2001 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation

;***

; VP: VP Multitasker

; ISR TASKS

;***

IsrThread1 ; Serviced at ISR rate/4

;---------------------------VP: RS232 Transmit----------------------------------

;***;

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) These routines

; send and receive RS232 serial data, and are currently; configured (though modifications

; can be made for the popular "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

; RECEIVING: The rs232Rxflag is set high whenever a valid byte of data has been received

; and it is the calling routine’s responsibility to reset this flag once the incoming

; data has been collected.

; TRANSMITTING : The transmit routine requires the data to be inverted and loaded

; (rs232Txhigh+rs232Txlow) register pair (with the inverted 8 data bits stored in rs232Txhigh

; and rs232Txlow bit 7 set high to act as a start bit). Then the number of bits ready for

; transmission (10=1 ;start + 8 data + 1 stop) must be loaded into the rs232Txcount register.

; As soon as this latter is ;done, the transmit routine immediately begins sending the data.

; This routine has a varying ;execution rate and therefore should always be placed after any

; timing-critical virtual peripherals ;such as timers, adcs, pwms, etc. Note:

;

; The transmit and receive routines are independent and either may be removed, if not needed,

; to ;reduce execution time and memory usage, as long as the initial "BANK serial" (common)

; instruction is kept.

; Input variable(s) : rs232Txlow (only high bit used), rs232Txhigh, rs232Txcount .

; output variable(s) : rs232Rxflag, rs232Rxbyte

; variable(s) affected : rs232Txdivide, rs232Rxdivide, rs232Rxcount

; Flag(s) affected : rs232Rxflag

; Program cycles: 17 worst case

; Variable Length? Yes.

;***

rs232Transmit

_bank rs232TxBank ;2 switch to serial register bank

decsz rs232TxDivide ;1 only execute the transmit routine

jmp :rs232TxOut ;1

mov w,#UARTTxDivide ;1 load UART baud rate (50MHz)

mov rs232TxDivide,w ;1

test rs232TxCount ;1 are we sending?

snz ;1

jmp :rs232TxOut ;1

:txbit clc ;1 yes, ready stop bit

rr rs232TxHigh ;1 and shift to next bit

rr rs232TxLow ;1

dec rs232TxCount ;1 decrement bit counter

snb rs232TxLow.6 ;1 output next bit

clrb rs232TxPin ;1

sb rs232TxLow.6 ;1

setb rs232TxPin ;1,17

:rs232TxOut

© 2001 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38

;---------------------------VP: RS232 Receive-------------------------------------

;***

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART)

; These routines send and receive RS232 serial data, and are currently configured

; (though modifications can be made) for the popular "No parity-checking, 8 data bit,

; 1 stop bit" (N,8,1) data ;format. RECEIVING: The rx_flag is set high whenever a valid

; byte of data has been received and it ;is the calling routine’s responsibility to reset

; this flag once the incoming data has been collected.

; Output variable(s) : rx_flag, rx_byte

; Variable(s) affected : tx_divide, rx_divide, rx_count

; Flag(s) affected : rx_flag

; Program cycles: 23 worst case

; Variable Length? Yes.

;***

rs232Receive

_bank rs232RxBank ;2

sb rs232RxPin ;1 get current rx bit

clc ;1

snb rs232RxPin ;1

stc ;1

test rs232RxCount ;1 currently receiving byte?

sz ;1

jmp :rxbit ;1 if so, jump ahead

mov w,#9 ;1 in case start, ready 9 bits

sc ;1 skip ahead if not start bit

mov rs232RxCount,w ;1 it is, so renew bit count

mov w,#UARTRxStDelay ;1 ready 1.5 bit periods (50MHz)

mov rs232RxDivide,w ;1

:rxbit decsz rs232RxDivide ;1 middle of next bit?

 jmp :rs232RxOut ;1

mov w,#UARTRxDivide ;1 yes, ready 1 bit period (50MHz)

 mov rs232RxDivide,w ;1

dec rs232RxCount ;1 last bit?

sz ;1 if not?

rr rs232RxByte ;1 then save bit

snz ;1 if so,

setb rs232RxFlag ;1,23 then set flag

:rs232RxOut

jmp isrOut ;7 cycles until mainline program resumes
;execution

isrThread2 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread3 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread4 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread5 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

© 2001 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

AN38 Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation

isrThread6 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread7 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread8 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread9 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread10 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread11 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread12 ; Serviced at ISR rate/16

jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrThread13 ; Serviced at ISR rate/16

; This thread must reload the isrMultiplex register reload isrMultiplex so isrThread1 will be

; run on the next interrupt. This thread must reload the isrMultiplex register since it is

; the last one to run in a rotation.

_bank Multiplexbank

mov isrMultiplex,#255

 jmp isrOut ; 7 cycles until mainline program resumes
; execution

isrOut

; Set Interrupt Rate

Isrend

; refresh RTCC on return (RTCC = 217-no of instructions executed in the ISR)

mov w,# -intPeriod

retiw ;return from the interrupt

; End of the Interrupt Service Routine

© 2001 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

Asynchronous Transmitter & Receiver (UART) Virtual Peripheral Implementation AN38

4.0 Baud Rate Generation and Timing
As an example of calculating the parameters which con-
trol the timing of the UART Virtual Peripheral, consider
transmitting data at 14400 baud with four times oversam-
pling (i.e. a sampling frequency of 57.6 kHz).
Transmission time for 1 bit = 1/14400 seconds
The divide ratio UARTTxDivide for the above example is
the sampling rate divided by the baud rate. The sampling
rate is defined by the interrupt frequency and the number
of slots for the UART virtual peripheral ISR in the multi-
tasker.
So the formula for the UARTTxDivide and UARTRxDi-
vide constants is:
UARTTxDivide = UARTTxFs/(UARTBaud)

= 57600/(14400 * 4) = 1

In receive mode, the generation of baud rate is calculated
in the same way, except that a constant called UARTRx-
StDelay is used to skip over the start bit. This constant is
equal to 1.5 times the baud period. Its purpose is to
ensure that the bits are sampled near the middle of each
pulse.

4.1 Circuit Design Procedure
The simplest version of the circuit requires two port pins
for transmit and receive. If hardware handshaking is
used, additional port lines are required. The hardware
interface only requires a driver for converting the voltage
level of the signals. The same concept can be used to
extend and configure two or more independent UARTs.

© 2001 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information, please visit the Ubicom website at www.ubicom.com. The site contains
technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: supportdesk@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

AN38 Universal Asynchronous Transmitter/Receiver (UART) Virtual Peripheral

Lit #: AN38-03

