
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive companies.
Application Note 29

November 2000
I2C Virtual Peripheral Implementation
1.0 Preface
This document outlines the software needed to imple-
ment I2C Slave, Master and Multi-Master with the SX
communications controller from Ubicom, Inc. It also
describes the operation of I2C and its implementation on
the SX device using the concept of Virtual Peripheral.
This software may be used with other Virtual Peripheral
modules from Ubicom, and with your own application
code, you can achieve a high performance solution with a
flexible and cost-effective communications controller.

2.0 I2C-Bus Concept
In modern electronic systems there are a number of
peripheral ICs that have to communicate with each other
and the outside world. To maximize hardware efficiency
and simplify circuit design, Philips developed a simple bi-
directional 2-wire, serial data (SDA) and serial clock
(SCL) bus for inter-IC control. It gives an economical
board level interface between different devices such as
microcontrollers, DACs, ADCs, EEPROM, etc. This I2C-
bus supports any IC fabrication process and, with the
extremely broad range of I2C-compatible chips from Phil-

ips and other suppliers, it has become a worldwide indus-
try standard proprietary control bus.

Each device is recognized by a unique address and can
operate as either a receiver-only device (e.g. an LCD
driver or a transmitter with the capability to both receive
and send information (such as memory). Transmitters
and/or receivers can operate in either master or slave
mode. A master is the device, which initiates a data
transfer on the bus and generates the clock signals to
permit that transfer. At that time, any device addressed is
considered a slave.

The I2C-bus is a multi-master bus. This means that more
than one device that is capable of controlling the bus, can
be connected to it. As masters are usually microcontrol-
lers, let’s consider the case of a data transfer between
two microcontrollers connected to the I2C-bus (see
Figure 2-1). This highlights the master-slave and
receiver-transmitter relationships to be found on the I2C-
bus. It should be noted that these relationships are not
permanent, but only depend on the direction of data
transfer at that time.

The basic I2C-bus, with a data transfer rate up to 100
kbits/s and 7-bit addressing, was originally introduced
nearly 20 years ago.

Figure 2-1. I2C-Bus Using Two Microcontrollers
www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
3.0 General Description
Both SDA and SCL are bi-directional lines, connected to
a positive supply voltage via a current-source or pull-up
resistor. When the bus is free, both lines are high. The
output stages of devices connected to the bus must have
an open-drain or open-collector to perform the wired-
AND function. Data on the I2C-bus can be transferred at
rates of up to 100 kbits/s in the Standard-mode, but
higher rates are possible in faster modes. The number of
interfaces connected to the bus is solely dependent on
the bus capacitance limit of 400pF.

First lets clarify some of the terms used when talking
about an I2C-bus:

Master The device which initiates a
transfer, generates clock signals
and terminates a transfer.

Slave The device addressed by the
master.

Multi-Master More than one master can
attempt to control the bus at the
same time without corrupting the
message.

Arbitration The procedure to ensure if more
than one master simultaneously
try to control the bus, only one is
allowed to do so and the sinning
message is not corrupted.

Clock Synchronization Procedure to synchronize the
clock or more devices.
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 2 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
3.1 Start and Stop Conditions
Within the procedure of the I2C-bus, unique situations
arise which are defined as start (S) and stop (P) condi-
tions. A high to low transition on the SDA line while SCL
is high is one such unique case. This situation indicates a
start condition. A low to high transition on the SDA line
while SCL is high defines a stop condition (see
Figure 3-1). Start and stop conditions are always gener-
ated by the master. The bus is considered to be busy

after the start condition, and it is considered to be free
again a certain time after the stop condition. Detection of
start and stop conditions by devices connected to the bus
is easy if they incorporate the necessary interfacing hard-
ware. However, microcontrollers with no such interface
have to sample the SDA line at least twice per clock
period to sense the transition.

3.2 Transferring Data
This section contains a short description of the I2C data-
flow, acknowledge, clock synchronization, and arbitra-
tion. This is the also considered as the basic of the I2C
standard.

3.2.1 Byte format

Every byte put on the SDA line must be 8-bits long. The
number of bytes that can be transmitted per transfer is

unrestricted. Each byte has to be followed by an
acknowledge bit.

Data is transferred with the most significant bit first (see
Figure 3-2).

If a slave can’t receive or transmit another complete byte
of data until it has performed some other function, for
example servicing an internal interrupt, it can hold the
clock line SCL low to force the master into a wait state.
Data transfer then continues when the slave is ready for
another byte of data and releases clock line SCL.

Figure 3-1. I2C, start and stop Conditions

Figure 3-2. Data Transfer on the I2C-bus
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
3.2.2 Acknowledge

Data transfers with acknowledge is obligatory. The trans-
mitter releases the SDA line during the acknowledge
clock pulse, and this signal is then pulled high (pull-up).

The receiver must pull down the SDA line during the
acknowledge clock pulse so that it remains stable low
during the high period of this clock pulse (see
Figure 3-3).

Of course, set-up and hold times must also be taken into
account. When a slave does not acknowledge the
address, the slave has to leave the data line high (for
example, it’s unable to receive or transmit because it’s
performing some real-time function). The master can
then generate either a stop condition to abort the transfer,
or a repeated start condition to start a new transfer. If a
slave-receiver does acknowledge the slave address but
some time later in the transfer cannot receive any more
data bytes, the master must again abort the transfer. This
is indicated by the slave generating the not-acknowledge
on the first byte to follow. The slave leaves the data line
high and the master generates a stop or a repeated start
condition.

If a master-receiver is involved in a transfer, it must signal
the end of data to the slave- transmitter by not generating
acknowledge on the last byte that was clocked out of the
slave. The slave-transmitter must release the data line to
allow the master to generate a stop or repeated start con-
dition.

Figure 3-3. Acknowledge on the I2C-bus
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 4 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
3.2.3 Clock Synchronization and Arbitration

All masters generate their own clock on the SCL line to
transfer messages on the I2C-bus. Data is only valid dur-
ing the high period of the clock. A defined clock is there-
fore needed for the bit-by-bit arbitration procedure to take
place. Clock synchronization is performed using the
wired-AND connection of I2C interfaces to the SCL line.
This means that a high to low transition on the SCL line
will cause the devices concerned to start counting off
their low period and, once a device clock has gone low, it
will hold the SCL line in that state until the clock high
state is reached (see Figure 3-4).

However, the low to high transition of this clock may not
change the state of the SCL line if another clock is still
within its low period. The SCL line will therefore be held
low by the device with the longest low period. Devices
with shorter low periods enter a high wait-state during
this time. When all devices concerned have counted off
their low period, the clock line will be released and go
high. There will then be no difference between the device
clocks and the state of the SCL line, and all the devices
will start counting their high periods. The first device to
complete its high period will again pull the SCL line low.
In this way, a synchronized SCL clock is generated with
its low period determined by the device with the longest
clock low period, and its high period determined by the
one with the shortest clock high period.

Figure 3-4. Clock Synchronization During the Arbitration Procedure
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
A master may start a transfer only if the bus is free. Two
or more masters may generate a start condition within
the minimum hold time of the start condition, which
results in a defined start condition to the bus. Arbitration
takes place on the SDA line, while the SCL line is at the
high level; the master that transmits a high level while
another master is transmitting a low level, will switch off
its data output stage, because the level on the bus
doesn’t correspond to its own level.

Arbitration can continue for many bits. The first stage is
comparison of the address bits. If the masters are each
trying to address the same device, arbitration continues
with comparison of the data-bits if they are master-trans-

mitter, or acknowledge-bits if they are master-receiver.
Since address and data information on the I2C-bus, are
determined by the winning master, no information is lost
during the arbitration process. A master that loses the
arbitration can generate clock pulses until the end of the
byte in which it loses the arbitration. If a master also
incorporates a slave function and it loses arbitration dur-
ing the addressing stage, it’s possible that the winning
master is trying to address it. The losing master must
therefore switch over immediately to its slave mode.
Figure 3-5 shows the arbitration procedure for two mas-
ters.

Figure 3-5. I2C Arbitration Procedure of Two Masters
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 6 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
Of course, more may be involved (depending on how
many masters are connected to the bus). The moment
there is a difference between the internal data level of the
master generating DATA 1 and the actual level on the
SDA line; its data output is switched off, which means
that a high output level is then connected to the bus. This
will not affect the data transfer initiated by the winning
master. Since control of the I2C-bus is decided solely on
the address or master code and data sent by competing
masters, there is no central master, nor any order of pri-
ority on the bus. Special attention must be paid if, during
a serial transfer, the arbitration procedure is still in
progress at the moment when a repeated start condition
or a stop condition is transmitted to the I2C-bus. If it’s
possible for such a situation to occur, the masters
involved must send this repeated start condition or stop
condition at the same position in the format frame.

In other words, arbitration is not allowed between:

• A repeated start condition and a data bit
• A stop condition and a data bit
• A repeated start condition and a stop condition.
Slaves are not involved in the arbitration procedure.

For more information on the I2C specification, visit:

http://www-us.semiconductors.phil-
ips.com/i2c/facts/#specification

http://www.philips.semiconductors.com/prod-
ucts/all_other.html (#33, Basic I2C specification)
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
4.0 Ubicom I2C Virtual Peripheral Implementation
Implementation of the I2C specification on SX devices is
achieved by using the available I2C Virtual Peripheral
modules. There are three I2C Virtual Peripheral modules,
implemented according to "vp_guide_1.02.src", available
at www.scenix.com:

By using these Virtual Peripheral modules the user has
the ability to implement a variety of I2C peripheral combi-
nations. This is similar to what is done with hardware
implemented I2C peripherals. The advantage of using the
Ubicom Virtual Peripheral concept is ability to change
these software peripherals to suit the users exact
requirements, without paying more in hardware. This
flexibility means that many different I2C solutions can be
achieved using the same SX device.

The hardware required to interface the I2C bus specifica-
tion to the SX device is very simple. All that is required is
2 pull-up (4.7K when operating at 5V) resistors, one on
each of the I2C bus lines. For demo description, see Sec-
tion 6.0.

4.1 I2C Slave Virtual Peripheral (iscs.src)
The I2C slave Virtual Peripheral, allows any SX device
with the interface required to operate as an I2C slave.
The way, in which this peripheral has been written, has
been with the intent to give the user simple access sub-
routines to call and need not worry about the inner work-
ings of the peripheral code.

4.1.1 Using the I2C Slave Virtual Peripheral

In order to use the I2C Slave Virtual Peripheral all that is
required is to follow the steps listed below.

1. Obtain the latest version of i2cs.src.
2. Modify the pin definitions of the SDA (i2csSda) and

SCL (i2csScl) lines, and the port assignment
(i2csPort) for rX, to suit your application (where X is
the port name, see datasheet for the appropriate SX
device).

3. Ensure the correct port is getting updated within the in-
terrupt service routine, update port section.

4. Set the I2C slave-address. The SX slave will respond to
this address only.

5. Set the correct string (data) that can be read by a mas-
ter in i2csString. Max 16 words (or write your own
main routine to put data to the i2csString).

6. The I2C slave peripheral is now ready to be used.
The current I2C slave mainline code was written as a part
of a demo, which interfaces to the I2C master. This code
can be changed as required to meet your application
requirements. At present all the slave mainline code
does, is to respond by putting the byte of data on the I2C
bus when a master asks for it from the slave. This is
exactly how an I2C EEPROM device would operate.

To receive data from an I2C master the following steps
need to be followed:

1. Check the i2csRxFlag. If it is true then the I2C slave has
received some data.

2. Check the i2csBeingReadFlag. If false then the
master is trying to send data to the I2C slave.

3. The byte will automatically be received into the
i2csDataInRegister. The data can now be read
out of this register and processed as required.

4. Clear the i2csRxFlag to indicate that the data has been
processed.

Sending data to an I2C master:

1. Load the data you wish to send to the I2C master into
the i2csDataOut register.

2. Set the i2csDataValid flag so that the I2C slave
state machine knows to send the data contained in
i2csDataOut.

3. The next time an I2C master attempts a read from this
slave, the data contained in the i2csDataOut register
will be automatically sent to the master.

4. Check the i2csDataNeeded flag. This flag is set if the
I2C master has tried to do a multiple read on this slave
and there is no valid data present in the i2csDataOut
register. The slave will hold the clock line low until the
i2csDataValid flag is set, indicating valid data.

4.1.2 Function description

The only function implemented on the I2C Slave is the
i2csInit. This subroutine should be called to initialize the
Virtual Peripheral. It initializes the variables that are criti-
cal to the operation of the I2C slave state machine.

4.1.3 I2C Slave Virtual Peripheral Description

The I2C slave Virtual Peripheral uses a state machine to
change between all the required states within any I2C
operation. This state machine operates solely within the
timer interrupt service routine. Since the state machine
can be executed asynchronously, it is also possible to run
the code from within the mainline if required. This
enables the user to select when to run the slave state
machine and possibly increase transmission speed. The
timer interrupt service routine determines how often the
state machine is executed. The frequency of execution,
influences the maximum transfer rate to and from the
slave. Currently the interrupt frequency is set so that the
slave can run at 100 kHz. To further increase the perfor-
mance of the slave state machine, it is possible to com-
bine two states together, which need not be separate. For
example, a state that only performs processing, may just
as well be executed at the end of the previous state. This
would result in better state machine efficiency and would
enable a reduction in the interrupt frequency. Description
of each of the states in the I2C slave interrupt service rou-
tine state machine is as described in the following sec-
tions.

• I2C slaveImp i2cs.src

• I2C master i2cm.src

• I2C multi-master i2cmm.src
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 8 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
4.1.3.1 I2C Slave Interrupt-Driven State Machine

The current state of this state machine is stored in the
registers i2csState and i2csSubState. These are
the discrete states of this state machine.

4.1.3.2 i2csIdle

i2csIdle is the state used when no start condition has
occurred and the device has not been addressed. The
I2C slave will stay in this state until the state is changed
by the independent subroutine i2csGetStartStop.

4.1.3.3 i2csWaitForSclLow

This state simply waits until SCL goes low. It is entered
once i2csGetStartStop encounters a start condition.
Once SCL goes low, the state is incremented.

4.1.3.4 i2csGetAddress

This state prepares the i2csReadByte routine to get 8-
bits of data. The state is incremented to i2csReadByte
before exiting.

4.1.3.5 i2csReadByte

This state reads a byte of data. i2csBitCount needs to
be loaded with #8 before entering this state, or it will not
increment to the next state after 8 bits of data have been
loaded.

4.1.3.6 i2csProcessAddress

This state simply performs a quick calculation to figure
out if this slave was just addressed. If this slave was
addressed, then this state prepares to either read data or
write data, depending on bit one of the first byte received.
If it was not, then it changes the state back to i2csIdle.

4.1.3.7 i2csSendAck

This state outputs an ACK pulse, to tell the master that
data was received correctly. It pulls SDA low while SCL is
pulsed high and low by the master.

4.1.3.8 i2csReadData

This state prepares i2csReadByte to receive 8 bits of
data. Before it exits the state is incremented.

4.1.3.9 i2csMakeIdle

This state puts the I2C slave back into idle mode.

4.1.3.10 i2csProcessData

This state processes a byte of data that was just
received. It moves the byte that was just received into the
i2csDataIn register, and sets the i2csEventFlag to
indicate an I2C Slave event and sets the i2csRxFlag to
indicate that the slave received a byte of data.

4.1.3.11 i2csSendData

This state prepares the i2csWriteByte state to send
the 8-bits of data in the i2csDataOut register.

4.1.3.12 i2csWriteByte

This state outputs a byte of data, clocked out by the SCL
pin. It must be prepared to send out a byte by having the
i2csByte register loaded with valid data and having the
i2csBitCount register loaded with #8.
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
4.1.3.13 i2csGetAck

This state gets an ACK from the I2C master. If an ACK is
received, the state will try to send another byte of data

from the i2csDataOut register. If no ACK is received, the
slave will be put back into its idle state.

Figure 4-1. I2C Slave State Machine

N

Y

N

N

Wait for
SCL low

Get
Address

Read
Byte

Process
Address

Addressed
this

Slave

Being
Read?

Send
ACK

Read
Data

Read
Byte

Process
Data

Send
ACK

Send
ACK

Send
Byte

Get
ACK

Wait for
data

Multiple
Read

Being Read Being Written

Idle

Start
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 10 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
4.2 I2C Master Virtual Peripheral (i2cm.src)
The I2C master Virtual Peripheral has been written to
enable the user to simply and easily operate the SX as
I2C master device. The way, in which this Virtual Periph-
eral has been written, was with the intent to give the user
simple access subroutines to call and need not worry
about the inner workings of the peripheral code.

The I2C master uses the same principles used for the I2C
slave. It run as a state machine in the timer driven inter-
rupt service routine and different I2C master operations
are performed by calling access subroutines from the
mainline code. These subroutines are described in Sec-
tion 4.2.2 and the state machine of the I2C master is dis-
cussed Section 4.2.4.

4.2.1 Using the I2C Master Virtual Peripheral

To configure the I2C master, set the port assignment to
match your application needs (see Section 4.1.1). How-
ever, you are restricted to use pin 0 and 1 on the port you
have assigned for I2C, but you are allowed to switch what
pin is SCL and SDA. For pin and port setup, refer to the
documentation for the demo board you are using. The
I2C master has been set to run at 100 kHz. To change the
clock speed, simply recalculate the RTCC reload value at
the end of the interrupt service routine.

The mainline code written currently reads data out of a
slave device at address A0h (on board EEPROM
address on some demo boards). This same code can
read data out of an I2C Slave Virtual Peripheral if the
address is changed to 40h (or to the value set in the I2C
Slave Virtual Peripheral code). The mainline code is very
small and utilizes the I2C master access subroutines.
These subroutines are briefly described below:

4.2.2 Function description

This section describes the interface to the I2C Master Vir-
tual Peripheral.

4.2.2.1 i2cmSendByte

This routine sets up the I2C Master state machine to write
the byte of data in the i2cmDataBuf register. Before
entering this routine, make sure that the I2C Master state
machine is in its idle state (use the i2cmWaitNotBusy
subroutine) and that the i2cmAddress is loaded with
the address of the slave that this byte is going to, and
that i2cmDataBuf is loaded with the data to send. This
function is actually calling i2cmSendBytes with argu-
ment 1.

4.2.2.2 i2cmSendBytes

This routine sets up the I2C Master state machine to write
the bytes of data in the i2cmDataBuf register. Before
entering this routine, make sure that the I2C Master state
machine is in its idle state (use the i2cmWaitNotBusy
subroutine) and that i2cmAddress is loaded with the
address of the slave that this byte is going to, that the
buffer i2cmDataBuf is loaded with the data to send, and
that the i2cmNumBytes register is loaded with the num-
ber of data bytes to send.

4.2.2.3 i2cmWaitNotBusy

This routine polls the i2cmState register until it is not
busy. It returns when the I2C master state machine
becomes idle. It returns a (0) in the w register if the trans-
fer appeared successful (i.e. The slave returned an ACK
when addressed), and a (1) in the w register if the slave
did not return an ACK when addressed/written.

4.2.2.4 i2cmGetByte

This routine gets one byte of data from the slave at
address i2cmAddress. Before calling this routine,
ensure that the I2C Master State Machine is in its idle
state (use the i2cmWaitNotBusy subroutine) and that
the i2cmAddress register is loaded with a valid
address. The routine returns with the byte received in the
w register and in the i2cmDataBuf register.

4.2.2.5 i2cmGetBytes

This routine gets i2cmNumBytes of data from the slave at
address i2cmAddress. Before calling this routine,
ensure that the I2C Master state machine is idle by using
the i2cmWaitNotBusy subroutine, that i2cmAddress
register contains the address of the slave to be read
from, and that the i2cmNumBytes register is loaded with
the number of bytes of data to receive. The received
bytes will be contained in the buffer i2cmDataBuf.

4.2.2.6 i2cmInit

This subroutine should be called on start-up. It initializes
the registers that are critical to the operation of the I2C
Master state machine.

4.2.3 Flags and variables

The following variables and flags may be useful.
© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
4.2.3.1 I2C Master Flags

4.2.3.2 Variables

4.2.4 I2C Master Virtual Peripheral Description

The program is event-driven state machine, running at a
fixed interrupt rate. The behavior is controlled by the
main program, which calls sub routines implemented in
the I2C Master. These access subroutines set the state of
the I2C master state machine and handle all register
manipulation. Each of the possible states of the state
machine is described in the sections that follow.

Currently the interrupt frequency is set so that the slave
can run at 100 kHz. The user can change the main pro-
gram to improve functionality or change the usage. In this
example following the i2cm.src file, the main program is
sending the command ‘READ’ to the slave at the address
defined in i2cmSlaveAddress. After the command is
send, it’s waiting for incoming characters and when they
arrive, they are written to a buffer in bank 7 called
i2cmRecvString. The loop is reading one byte at a
time, but this could be changed to read more bytes.

i2cmNack This bit is set if the I2C master has not
received an acknowledge from the
slave after the last transaction.

i2cmRxFlag This flag Indicates that the number of
bytes requested has been received.

i2cmStatein This indicates the state that the I2CM
master is currently ins.

i2cmSubState This indicates the sub-state that the
I2C master is currently in.

i2cmPortBuf This buffer holds the current state of
the I2C port direction register

i2cmBitCount Indicates the number of bits left to
process in read/write

i2cmBytet The byte currently being written/read
by the I2C master

i2cmIndex The index into the I2CM buffer, used
for writing

i2cmNumBytes Set this register to the number of
bytes to send/receive. The bytes to
be sent/received will be found in reg-
isters i2cmDataBuf

i2cmBuffer The buffer uses the last 7 registers of
this bank to store incoming or outgo-
ing data. This could easily be
increased if required_

i2cmAddress This register remembers the address
of the slave to which the master will
be communicating
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 12 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
4.2.4.1 I2C Master Interrupt-Driven State Machine

This is the I2C Master Interrupt Service Routine. It is an
interrupt-driven state machine which allows all of the

actions of the I2C Master controller to be carried out, Vir-
tual Peripheral style, with virtually no interaction from the
mainline program.

4.2.4.2 i2cmIdle

This is the state that the I2C Master is usually in when it is
not in use. It just ensures that the i2cmPortBuf SCL
and SDA are both set high

4.2.4.3 i2cmStart

When any mainline program wants to use the I2C master,
it puts the master into start mode. This mode creates a
start condition on the I2C bus. A start condition is created
when SDA goes from high to low while SCL stays high.

4.2.4.4 i2cmStartWrite

This state performs some pre-processing which allows
the i2cmWrite state to do its work. It sets up the bit
count, gets the next piece of data from the buffer and pre-
pares to send it.

4.2.4.5 i2cmWrite

This state writes the data in i2cmByte to the I2C bus

4.2.4.6 i2cmGetAck

This state gets an ACK from the slave device. If no ACK
is received, the I2C Master state machine puts a stop
condition on the bus and the i2cmFlags register is
loaded to indicate that a NACK has occurred.

4.2.4.7 i2cmWriteRepeat

This state determines, after one byte of data is sent,
whether or not there is another byte to be sent. If so, this
state goes back to i2cmStartWrite and sends the
next byte.

4.2.4.8 i2cmStop

This state puts a stop condition on the I2C bus and resets
the state machine back to its idle state. A stop condition
is when SDA goes from low to high while SCL is high.

4.2.4.9 i2cmStartRead

This state simply loads the contents of the i2cmAddress
register into the i2cmByte register and sets up the
i2cmWrite state to output the address of the slave to
read.

4.2.4.10 i2cmReadData

This state prepares the I2C Master read routine so it can
read from the slave device. It initializes the bit count, etc.

4.2.4.11 i2cmRead

This state read 8 bits of data from the slave device.

4.2.4.12 i2cmStoreByte

This state stores the byte just read into the buffer.

Figure 4-2. I2C Master State Machine (Multiple read/write is default “N” in demo code)

ReadWrite

Send
Start

B it

Send
Address
to Read

Get ACK

Read
Data

Store
Data

Send
ACK

Multiple
Read

Send
Step B it

Load
Byte From

W rite

M ultip le
W rite

Send
S top

Send
Start
B it

Buffer

it to
Bus

G et an
AC K

Y

Y

© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
4.2.4.13 i2cmSendAck

This state sends an ACK if there is data left to write, and
a NACK if there is no data left to write.

4.3 I2C Multi-Master Virtual Peripheral (i2cmm.src)
The I2C multi-master Virtual Peripheral has been written
to enable the user to simply and easily operate the SX as
an I2C master in multi-master mode. Arbitration is used to
determine whether or not a master is able to use the bus
at any given time.

4.3.1 Using the I2C Multi Master Virtual Peripheral

To configure the I2C multi master, set the port assignment
to match your application needs (see Section 4.1.1).
However, you are restricted to use pin 0 and 1 on the port
you have assigned for I2C, but you are allowed to switch
what pin is SCL and SDA. For pin and port setup, refer to
the documentation for the demo board you are using.

Please note that you do not have to set a text string for
this multi master demo.

For test purposes, it is also recommended that LEDs are
connected to the pins RC.0, RC.1 and RC.2 (default
selected). These can be used to verify correct operation
of the multi-master system.

Once the SX device is programmed and running, it will
read whatever data is stored in the first bank of the
EEPROM until a null (string termination) is found. If there
is more than one multi master both will start arbitration of
the bus.

When you run the program in debug mode on the "SX-
Key Assembler", you will see the data contained in the
EEPROM being read into the last RAM bank. You can
also see the text read and the slave address being read
from, in a watch window (see Parallax SX Key/Blitz
development system manual on how to use watch direc-
tive).

4.3.2 Function description

See description for the Master in Section 4.2.2 for a
detailed description about the I2C Multi Master functions.
These are the same except that the names are different;
i2cm<Name> is here called i2cmm<Name>.

4.3.3 Flags and variables

The following variables and flags may be useful. Please
note the similarities with the master.

4.3.3.1 I2C Multi Master Flags

4.3.3.2 Variables

4.3.4 I2C Multi Master Virtual Peripheral Description

This program relies on two aspects for correct multi-mas-
ter operation. The first is an arbitration algorithm that exe-
cutes every second ISR. This arbitration algorithm is
used to detect when a master may communicate on the
bus, or if it must wait for another master to finish. The
second aspect which is important for correct operation of
the I2C specification on the SX, is keeping a defined
duration of the start-bit between masters. This ensures
that a start may always be detected and that SX masters
on the bus may synchronize their I2C clocks before
beginning a transmission.

Once the SX device is programmed it will read whatever
data is stored in the first bank of the EEPROM, until a null
is found. Since each SX Multi Master on the bus will be
trying to do this at the same time, arbitration is used. The
SX masters will wait until the bus is idle, or a start bit is
being put onto the bus. In either of these cases the mas-
ter will begin transmission. Whichever master pulls the
SDA line low first will now win arbitration as the I2C-bus is
operated using open collector outputs. The master that
loses arbitration will now wait a random length of time
and then try again. The time that the master waits may
need to be adjusted to suit your application. The way
arbitration is detected is by setting a flag within the ISR,
allows the user to choose what to do once a loss of arbi-
tration is detected. At present, the master simply waits up

i2cmmNack This bit is set if the I2C master
has received a NACK from the
slave

i2cmmRxFlag Indicates that the number of
bytes requested have been
received

i2cmmLostArb Indicates that this master has
lost arbitration

i2cmmDoingWrite Used to remember whether
doing a read or write when recov-
ering from loss of arbitration

i2cmmInControl Indicates that this master is in
control of the I2C bus

i2cmmIndex The index into the I2C Master
buffer, used for writing

i2cmmNumBytes The index into the I2C Master
buffer, used for reading

i2cmmStrtCtr Counts the number of SCL high
cycles before sending a start bit
onto the I2C–bus

i2cmmBuffer The buffer uses the last 7 registers
of this bank (pre-increments, so put
I2C Master buffer here.)

i2cmmAddress The address to read/write to.
Loaded with the value from the
i2cmmSlaveAddr at startup.

i2cmmDataBuf Data buffer
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 14 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
to 85 I2C clock cycles before retrying the transmission.
The length of this wait is totally dependant off the maxi-
mum length of any operation to take place on the I2C-
bus.

Currently the interrupt frequency is set so that the multi
master can run at 97 kHz.

The formula to calculate the maximum bus speed for this

To make the Multi Masters bus speed run at 100kHz, the
“worst-case” cycle count should have been reduced from
86 to 83 (or less).

4.4 Important Considerations
Depending on the speed you wish to operate the I2C-bus
at, it may be necessary to change the pull-up resistor val-
ues. This is also an idea if your test set-up or (your I2C
bus) are highly capacitive, i.e. when the test set-up
implies "long" wires connecting two evaluation boards. If
you are having trouble with the Multi Master code at
97kHz, you should consider reducing the pull-ups resis-
tors as an option (i.e. to 2.2k).

Bus over sampling rate * Cycles in thread

Clock speed * Thread rate
Bus speed =

50.000.000 * 1/2

3 * 86
= = 96.899kHz
© 2000 Ubicom, Inc. All rights reserved. - 15 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
5.0 Specifications

5.1 I2C Slave Virtual Peripheral Requirements
Operational mode: Random Byte access
Clock speed: 50MHz
Max MIPS usage: 32MIPS
Max cycles in each thread: 79
Bus over sampling rate: 4
Bus speed at current rate: 100kHz
ISR service rate: 400kHz
RAM usage: 10 bytes + 16bytes in i2csStringBank

Pin usage: 2 I/O pins for the I2C bus (SDA and SCL)
RTCC setting: Timer interrupt running every 2.6us for 100kHz- bus speed
Ubicom mnemonics: yes
Multithreaded: no

5.2 I2C Master Virtual Peripheral Requirements

Operational mode: Random byte read from slave.
Clock speed: 50MHz
Max MIPS usage: 19MIPS
Max cycles in each thread: 64 cycles
Bus over sampling rate: 3
Bus speed at current rate: 100kHz
ISR service rate: 300kHz
RAM usage: 15 bytes of RAM + 16 bytes in i2cmRecvString

Pin usage: 2 I/O pins for the I2C bus (SDA and SCL)
RTCC setting: Timer interrupt running every 3.3us for 100kHz- bus speed
Ubicom mnemonics: yes
Multithreaded: yes

5.3 I2C Multi-Master Virtual Peripheral Requirements

Operational mode: Random byte read from slave and arbitration.
Clock speed: 50MHz
MIPS usage: 25MIPS
Max cycles in each thread: 86 cycles
Bus over sampling rate: 3
Bus speed at current rate: 97kHz
ISR service rate: 290kHz
RAM usage: 20 + 16 bytes in i2cmmRecvString
Pin usage: 5 (SDA, SCL, and 3 LEDs)
RTCC setting: Timer interrupt running every 1.76us for 97kHz bus speed
Ubicom mnemonics: yes
Multithreaded: yes (86cycles = 97kHz bus speed)

Note:The Master and Multi-Master modules are multithreaded, which means that they can be combined with other Vir-
tual Peripheral in a complete design. See Virtual Peripheral™ Users Manual for details about multithreading.
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 16 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
6.0 I2C Master/Slave demo description
The master and slave Virtual Peripheral modules have
been written such that if you connect two SX devices as
shown in Figure 6-1, it will be possible to execute a sim-

ple I2C demo. The pin configuration has been set up
such that these Virtual Peripheral modules are compati-
ble with the Ubicom I2C/UART demo board.

In the demo program, the master SX continuously reads
data from the slave SX. The data is read from the slave
SX and stored in bank 7. By default this bank is loaded
with the letters ‘I2C SLAVE’. This data will be read by the
master SX and stored in bank 7. By running the SX mas-
ter in debug mode, you will see the data loaded into this
bank. It is also possible to put a scope onto the I2C data
lines and watch the data being transferred back and forth
at 100kHz.

If you are having difficulty, ensure the slave is reset and
running before the master. By running the master in
debug mode, it is also possible to see if the slave SX is
not acknowledging.

Figure 6-2 illustrates the data format used to read data
from the SX slave. This is identical to the format used
when doing a random read from an I2C EEPROM device.

Figure 6-1. I2C Virtual Peripheral Demo Connection Diagram

SX
Master

Ra.0

Ra.1

(I2CM.SRC)

SX
SlaveRb.0

Rb.1

(I2CS.SRC)

4.7K 4.7K

VCC (5.0V)

SCL

SDA

Figure 6-2. I2C Master Reading Data from Slave
© 2000 Ubicom, Inc. All rights reserved. - 17 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
7.0 Test Description
The Virtual Peripheral is tested and verified. This section
describes the test environment together with a functional
description of how the test was performed. For the user
of the Virtual Peripheral, this section is an overview of the
tests performed to do quality assurance (QA) of the Vir-
tual Peripheral’s functionality and integration.

7.1 Test Environment
During the qualification the Virtual Peripheral modules
have been tested on several different demo and evalua-
tion boards to ensure that the Virtual Peripheral are cor-
rect for different environments. The equipment used
when testing the I2C Virtual Peripheral modules are listed
below:

7.2 Functional test description
The functional test was based upon the functionality
implemented in the Virtual Peripheral according to the
I2C specification (standard). There are some special con-
siderations that affect the tests performed on the Virtual
Peripheral modules:

• The I2C Master Virtual Peripheral can only operate in a
single master environment. There cannot be multiple
master’s connected to the bus at the same time.

• There can be several Multi-Masters connected to the
I2C bus at the same time.

• The I2C Tester behaves as a Multi-Master and can
therefore not be used together with a Master.

• All components in the test were connected to the same
Ground (GND) level.Oscilloscope : Tektronix TDS 3034 (300MHz)

Demo board(s) : SX 28-52 Demo board
SX Key Demo board (Paral-
lax)
SX Tech (Parallax)

I2C tester : Micro Computer Control
Cooperation
RS232 To I2C Host adapter
with ASCII interface
(Model MIIC-202)

SX Key assembler : Tested with SX 18/28 Key ver-
sion 1.09 rev E/F
Tested with SX 48/52 Key ver-
sion 1.19

SASM assembler : Tested with SASM version
1.44.6

Debugger : Parallax SX Key rev. E
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 18 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
The schematic of the test environment is shown in the
Figure 7-1 below:

Before the actual test was started we defined a set of
scenarios to test to ensure that all the implemented func-
tion was tested. All functions could be tested with fewer
scenarios, but there was added a couple of scenarios to
test the integrity between Virtual Peripheral modules, the
different scenarios used during the test are listed below:

7.2.1 Important Test Considerations

The test setup included wiring between demo boards,
and also from the I2C tester and the oscilloscope; there-
fore additional pull-up resistors were needed.

In the description of the different scenarios, filenames
have been used to show which code was programmed
into the SX device, and these filenames indicates if the
code is slave, master or multi-master:

i2cs.src - I2C Slave source code

i2cm.src - I2C Master source code

i2cmm.src - I2C Multi-Master source code

Multi-Master was operated at 97kHz.

During the test the assemblers used were the SX-Key
assembler (from Parallax, because of the debug possibil-
ities) and the Ubicom Assembler (SASM).

A digital sampling oscilloscope was common for all the
tests, and used to check the bit stream to ensure that the
start/stop conditions and the acknowledge signal was
according to the I2C specifications.

Figure 7-1. Overview of the Test Environment

SX
Master Ra.0

Ra.1

(I2CM.SRC)

SX
SlaveRb.0

Rb.1

(I2CS.SRC)

4.7K 4.7K

VCC (5.0V)

SCL

SDA

SX
Multi-
Master

Rb.0
Rb.1

(I2CMM.SRC)

I2C
TesterSCL

SDA

Oscilloscope

Channel 1

Channel 2

EEPROM

1. I2C Test -- I2C Slave
2. I2C Master -- I2C EEPROM
3. I2C Master -- I2C Slave
4. I2C Multi-Master -- I2C EEPROM
5. I2C Multi-Master -- I2C Slave
6. I2C Multi-Master -- I2C Multi-Master -- EEPROM
7. I2C Multi-Master -- I2C Tester -- EEPROM
© 2000 Ubicom, Inc. All rights reserved. - 19 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
7.2.2 Scenario: I2C Tester -- I2C Slave

The purpose of the scenario was to test the I2C slave.
We used the I2C tester to read from the slave and check
for correct operation.

1. The I2C tester was connected to the SX 28/52 Demo
Board.

2. The i2cs.src was loaded into SX key assembler.
3. The source code was modified for the assembler and

pins used for SCL and SDA
4. The debugger was started.
5. A terminal window was started to communicate with the

I2C tester.

6. The slave receive address on the I2C tester was set to
40h same as default address on the I2C Slave. Addi-
tional I2C tester settings: Echo on, ASCII mode and
open bus connection.

7. Value 00h was written to the I2C slave. This should set
the internal address to 0.

8. One byte was read back from the I2C slave.
9. Value 01h was written to the slave. This should set the

internal address to 1
10.And the next byte was read from the slave. The internal

address was incremented until we were at the end of
the string.

The string read back from the slave was verified to be
“I2C SLAVE”.

7.2.3 Scenario: I2C Master -- I2C EEPROM

The purpose of this scenario was to test the I2C master
for correct operation.

1. The i2cm.src was loaded into SX-Key assembler.
2. The source code was modified for the assembler, and

the slave receive address was set to A0h (hardware
address on the EEPROM)

3. The debugger was started and the SX was reset and
started.

Polling the registers in the debugger showed that the
string in the EEPROM was read into i2cmRecvString
(RAM bank 7) on the master.

7.2.4 Scenario: I2C Master -- I2C Slave

When the master was verified functional, we wanted to
verify a correct operation of both the I2C Master and I2C
Slave together. We added an additional demo board for
the slave device, and the i2cs.src was downloaded to it.
We removed the debugger from the slave board and con-
nected the resonator.

1. SDA, SCL and ground were connected from the slave
board.

2. The i2cm.src was loaded to the SX-Key assembler,
and we set the slave receive address to 40h.

3. We started the debugger, and the SX was reset and
started.

Polling the registers in the debugger showed that the
string in the slave device was read into
i2cmRecvString on the master (RAM bank 7).

7.2.5 Scenario: I2C Multi Master -- I2C EEPROM

The purpose of this scenario was to test the I2C Multi
Master.

1. The i2cmm.src was loaded into SX-Key assembler.
2. The source code was modified for the SX-Key assem-

bler, and the slave receive address was set to A0h
(hardware address on the EEPROM)

3. The debugger was started, and the SX was reset and
started.

Polling the registers in the debugger showed that the
string in the slave device was read into
i2cmmRecvString on the master (RAM bank 7).

7.2.6 Scenario: I2C Multi Master -- I2C Slave

This scenario is an extension of the previous scenario.
When the Multi Master was verified, we wanted to verify
a correct operation of both the I2C Multi Master and I2C
Slave together.

We added an additional demo board for the slave device,
which already contained the slave source code.

1. SDA, SCL and ground were connected from the slave
board.

2. The i2cmm.src was loaded to the SX-Key assembler
3. The source code was modified for the SX-Key assem-

bler.
4. The debugger was started, and the SX was reset and

started.
Polling the registers in the debugger showed that the
string in the slave device was read into
i2cmmRecvString on the master (RAM bank 7).

7.2.7 Scenario: I2C Multi Master -- I2C Multi Master --
EEPROM

The Multi Master had now been tested as a single mas-
ter. The purpose of this test was to verify correct arbitra-
tion in a multi master environment. We used the SX28-52
demo board, set up both the SX28AC and SX52BD as
Multi Master, the on-board EEPROM was used as slave
device.

1. The EEPROM contained a test string followed by a
string termination (00h)

2. Both SX devices were programmed with the I2C Multi
Master (i2cmm.src) and the slave address was set to
A0h on both SX’s.

3. Both debuggers were started, and both SX’s were reset
and started.

Polling the registers in the debuggers showed that the
string in the EEPROM was read into i2cmmRecvString
on both Multi Masters (RAM bank 7). This verifies a cor-
rect multi master operation.
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 20 - www.ubicom.com

I2C Virtual Peripheral Implementation AN29
7.2.8 Scenario: I2C Multi Master -- I2C Tester --
EEPROM

This scenario is an extension of the previous scenario
where one of the multi masters was replaced with the I2C
Tester.

1. The I2C tester was connected to the SX 28-52 demo
board.

2. The i2cmm.src was loaded to the SX-Key assembler.
3. The source code was modified for the SX-Key assem-

bler and the target SX was set to SX28. The slave re-
ceive address was modified to A0h

4. The debugger was started, and the SX was reset and
started.

5. A terminal window was started to communicate with the
I2C tester.

6. The slave receive address on the I2C tester was set to
A0h (Hardware address on the EEPROM). Additional
I2C Tester settings: Echo on, ASCII mode and open
bus connection.

7. The SX was polled and the string from the EEPROM
was read into the i2cmmRecvString and verified to
be the same as in the previous test (7.2.7)

8. A new test string was written to the EEPROM with the
I2C tester.

9. The SX was polled again to verify that the Multi Master
read the new string into i2cmmRecvString (RAM
bank 7).

A new string was written to the EEPROM with the I2C
tester, and the registers were polled again verifying a cor-
rect multi master operation.
© 2000 Ubicom, Inc. All rights reserved. - 21 - www.ubicom.com

AN29 I2C Virtual Peripheral Implementation
7.2.9 Summary

The purpose of these tests was to verify the I2C Virtual
Peripheral modules and check for correct operation
according to the I2C specifications. The I2C Slave, Mas-
ter and Multi Master have been tested in a “single” mas-
ter environment. The Multi Master has also been tested

in on the I2C bus with other multi masters present, where
both accessed a slave.

Below is a screenshot from a data transfer between a
Multi Master and the Slave.

The Figure 7-2 above shows a screenshot of SCL and
SDA during an I2C Multi Master read from the EEPROM
(and can be compared with Figure 6-2). The marks in the
figure represent:

1. Start condition
2. Write bit (bit 7 in slave address)
3. ACK from slave
4. Stop condition from master
5. Read bit (bit 7 in slave address)
6. Slave address (7 bits)
7. Address of byte to read (8 bit)
8. Data from slave (1 byte, not shown)

Figure 7-2. Screenshot of I2C Multi Master Reading EEPROM

 1 2 3 3 4 1 5 6 7 6 8

Scl

Sda
© 2000 Ubicom Semiconductor, Inc. All rights reserved. - 22 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 23 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: Sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

I2C Virtual Peripheral Implementation

Lit #: AN29-02

