
© 2000 Ubicom, Inc. All rights reserved. - 1 - www.ubicom.com

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
Virtual Peripheral™ is a trademark of Ubicom, Inc.

All other trademarks mentioned in this document are property of their respective com-
ponies.

Application Note 16
November 2000

SX IrDA Virtual Peripheral
Implementation

1.0 Introduction
The IrDA (Infra-Red Data Association) standard is wire-
less replacement for traditional wired connections
between computing devices and peripherals. It uses an
infra-red LED and photo-diode to transmit information at
up to 4Mbps over one metre.

This application note describes the implementation of the
lower levels of the IrDA protocol stack and the high level
IrComm protocol for a secondary device on the SX com-
munications controller. The implementation of this reli-
able protocol on a small communications controller is
achieved by relying on the application’s ability to re-send
data upon request rather than the traditional use of large
data buffers.

The implementation communicates at up to 115.2kbps
and makes use of the SX’s high clock speed to shape the
IrDA pulses without external hardware. It uses two virtual
peripheral UARTs: one for the IrDA port and one for a
debugging serial port.

The next section gives an overview of the IrDA stack and
describes the features of the SX implementation. Each
layer of the stack is then explained in detail. Finally,

descriptions of the demonstration applications and hard-
ware are given.

This documentation should be read in conjunction with
the IrDA Specification, IrDA Lite Specification and
IrComm available from www.irda.org.

1.1 THE IrDA STACK
Figure 1-1 shows the IrDA protocol stack. The boxes in
white are included in the SX implementation and are
described in this document

The physical layer converts octets of data to bit streams
and transmits them in the form of bursts of IR light (and
vice-versa). The rated operating range for IrDA is one
metre for all speeds, however under typical conditions
this range is usually higher.

The framing layer encapsulates the payload data within a
frame so that it can be transmitted and identified as a
frame of data when it is received by another station. The
frame data is protected by a CRC to confirm the validity
of the data.

Figure 1-1. IrDA Protocol Stack

IAS

Tiny TP

OBEX IrLAN IrCOMM

IrLMP

IrLAP

Frame/Driver

Physical Layer

© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

The link-access-protocol (LAP) layer controls the flow of
frames and provides a connection-based bi-directional
reliable data transfer service. It manages the discovery
process, the connection and negotiation process, and the
transfer of reliable data.

The link-management-protocol (LMP) layer serves to
multiplex the LAP connection between a number of
higher layers and/or applications using the reliable data
transfer service of the LAP layer.

The information-access-server (IAS) provides a way for
an IrDA device to get specific details about the high level
services another IrDA device offers.

The IrComm interface provides a reliable bi-directional
virtual COM or LPT interface between to devices. The
API interface can be considered to be that of a UART and
is intended to allow the use of software designed only to
work with a wired connection to be able to used a IrDA
virtual wired connection.

1.2 SX IrDA SPECIFICATIONS
The implementation is based on the IrDA Lite specifica-
tions for a secondary only device with support for con-
nection speeds up to 115200bps and with the following
primary features:

• Support for initiating XID discovery.
• Support for sending unnumbered-information frames.

1.2.1 Physical Layer
Multi-speed IrDA UART Virtual Peripheral supporting
115200, 57600, 38400, 19200, and 9600bps

1.2.2 Framing Layer
Byte-at-a-time processing of data including 16-bit CRC
protection of data.

1.2.3 LAP Layer
• SX can discover other devices by initiating the discov-

ery process.
• SX can be discovered by other devices by responding

a discovery request.
• SX can accept a connection request and negotiate a

high speed for the connection.
• SX can maintain a bi-directional flow of reliable data

within a connection.
• SX can transmit unreliable data frames outside of a

connection.
• SX can accept unreliable data frames outside of a con-

nection.

1.2.4 LMP Layer
Minimal implementation to allow multiplexing between
the IAS and the IrCOMM service.

1.2.5 IAS
Support for “GetValueByClass” queries to provide gen-
eral and IrCOMM specific device information.

1.2.6 IrCOMM
Support for the 3-wire raw IrCOMM protocol providing
both serial (COM) and LPT (IrLPT) services.

© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

2.0 Programming Methodology
The IrDA Virtual Peripheral consists of both interrupt and
mainline code. The interrupt service routine implements
the IrDA UART. Rather than implementing an application
by calling the IrDA sub-routines the code works on a call-
back system. Creating a new application involves imple-
menting certain functions which will be called by the IrDA
mainline code. This will become clearer in the section
describing the application layer.

An IrDA frame is processed one byte at a time through
every layer.

For reception the framing layer strips off the header and
passes the payload data one byte at a time to the pay-
load layer (part of the LAP layer). The payload layer
strips off the address and command bytes and if the
frame contains I data then it will pass the data one byte at
a time to the LAP layer which will pass it to the LMP layer.
The LMP layer will strip off the LMP address bytes and if
the frame contains IrComm data then it will pass it to the
application layer. At this point the frame has not yet been
validated by the frame-check-sequence (FCS) CRC nor
has it been validated as the correct frame number by the
LAP layer. Once the integrity of the frame has been
checked by the framing layer it will inform the payload
layer which will inform the LAP layer. The LAP layer will
verify the frame numbering and will inform the LMP layer
of the validity of the frame which will in-turn inform the
IrComm application layer.

The protocol stack is implemented as a number of layers,
each one based on a state-machine. All the state-
machines must operate in parallel and to achieve this the
state machines are event-driven. No state machine may
hold up the processor waiting for an event, but instead
must complete its processing for the incoming event and
return. The event handlers for a layer are subroutines
where the name of the routine is predefined so that the
call to the event handler can be coded in the originating
code.

There are two types of events:

• Asynchronous Events
• Synchronous Events
Asynchronous events are events that are triggered by the
interrupt service routine (ISR). When an event (e.g. a
received IrDA byte) has been detected by the ISR will set
the appropriate flag in a global ISR status register. The
main code is a loop that tests these flags and will call any
event handlers as appropriate.

Synchronous events are events that are generated by a
layer to inform a higher layer of a situation.

For example, when a byte has been received by the IrDA
UART in the ISR the IrDA UART data available flag will
be set. These asynchronous flags are polled by the main
routine and when the data available flag is detected the
data available event handler in the framing layer will be
called. The framing layer will obtain the data byte, pro-
cess it, and return. However, if the framing layer detects
the byte as payload data then before returning it will call
the payload data available event handler in the payload

layer. The payload layer will process the data, call any
appropriate higher event handlers, and return. When the
end-of-frame byte is received by the framing layer it will
test the FCS bytes and will call either the valid or the
error event handler in the payload layer. If appropriate the
payload layer will inform its higher layer and so on.

The following rules apply to inter-layer events or calls:

• The routine name must start with the abbreviation of
the calling layer followed by a ‘2’ followed by the abbre-
viation of the called layer.

• The call instruction must be proceeded by a page in-
struction.

• The return instruction from the called event must be a
‘retp’ instruction.

• The called code may change any global or shared reg-
isters.

• Upon returning the bank is assumed to have been
changed.

• A paged call may be replaced by a paged jump if direct-
ly after the inter-layer call has been completed the code
will issue a return instruction to return from a inter-layer
call.

© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

2.1 SOURCE CODE ORGANIZATION
The source code is so large it has been split among sev-
eral files to make editing easier. These source files are
concatenated together to form IrDA.src which is pro-
grammed into the SX.

Each separate source file implements a macros for code,
data and register definitions. The file Project.src uses
these macros to form the complete code. From
Project.src it can be seen how the code is arranged
in the program memory of the SX. This arrangement is
quite important because it ensures that instruction restric-
tions (such as jump tables residing in the lower half of a
page) are met.

The three application demonstrations can be selected by
removing the commenting next to the appropriate macro
in Project.src.

A simple batch file (Asm.bat) is supplied which will con-
catenate the source files together.

© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

3.0 IrDA Layer Descriptions
The following sections describe each of the layers in the
IrDA stack in more detail.

3.1 PHYSICAL LAYER
The physical layer consists of an IrDA UART to convert
octets of data to an IR pulse stream and to process the
received pulse stream into octets of data.

IR communication is inherently half-duplex in nature as
the IR emitter used for transmission is physically close to
the IR detector used for reception thus the detector will
always detect what is being transmitted. Furthermore a
minimum turnaround time must be respected to allow the
daylight correction on the detector to recover from the
transmission.

The octet encoding is dependant on the class of the
speed, and for “ASYNC” speeds (9600-115200bps) the
bit timing is the same as a conventual UART but based
on pulses. A ‘0’ is encoded as a pulse and a ‘1’ is
encoded as no pulse. The bit format is 1 start bit, 8 data
bits, and 1 stop bit (no parity). The octet will start with a
pulse for the start bit (start bit = ‘0’), followed by 8 data
pulses/no-pulses, followed by a no-pulse for the stop bit
(stop bit = ‘1’ - return to idle). The pulse can be of any
width between 1.6us (3/16ths of the bit time at
115200bps) and 3/16ths of the total bit time for the UART
speed.

3.1.1 SX Timing
The IrDA Virtual Peripheral implementation uses a con-
stant pulse time of 2.16us (within the IrDA specifications)
regardless of the speed. This time is 4/16ths of the bit
time at 115200 allowing the use of a divide by 4 rather
than a divide by 16 counter and reducing the counter res-
olution to 8-bit. The timer ISR routine will be executed
every 2.16us (108 clock cycles @ 50MHz) thus 4 inter-
rupts will be received per bit at the highest speed of
115200bps.

The HP HDSL1001 IrDA transceiver (which is described
in the hardware section) has the following signal proper-
ties:

• RxIdle High
• TxIdle Low
It should also be noted that the IR transceiver LED
timing is completely software controlled. If the SX
device leaves the LED on continually then the IR
transceiver may be permanently damaged as it will
be operating at 4.5 times its absolute maximum aver-
age current rating.
For reception the pulse will generate an interrupt flag
(falling edge) but will not generate an interrupt. If an inter-
rupt occurs during the ISR execution the SX will not re-

enter the ISR. By using the interrupt flag (rather than rais-
ing an interrupt) no interrupts are missed, even during
ISR processing. The flag will be detected the next time
the timer interrupts, and will be processed then.

3.1.2 Physical Layer API
When a byte has been received the global IrdaRxAvail
flag will be set and the data will be available from the
IrdaRxData register in the IsrBank.

A byte can be transmitted by first storing it in the
IrdaTxData register in the IsrBank and then by set-
ting the global flag IrdaTxStart. When the byte has
been transmitted the ISR will set the global flag IrdaTx-
Empty.

3.2 FRAMING LAYER
For transmission the framing layer adds the required
framing information to the payload data. For reception
the framing layer removes the framing information to
recover the payload data. The framing information con-
sists of turn-around delay bytes, beginning and end of
frame bytes, a 16-bit CRC check, and the application of
transparency bytes.

3.2.1 Frame Format
Framing is described in the IrDA IrLAP documentation
(pages 112-118). The format of a frame is shown in Fig-
ure 3-1.

The initial beginning-of-frame bytes (BOFs) take care of
the turnaround delay required for a IR receiver to recover
after transmission. Initial BOFs are send as $FF rather
than the BOF byte $C0 as recommended by the IrLAP
specification.

The frame-check-sequence (FCS) is a 16-bit CCITT CRC
covering all the payload data prior to the application of
any transparency bytes required. The traditional look-up
table approach requires a 512 byte look-up table thus is
unrealistic to implement on a small communications con-
troller. The FCS is instead calculated on a byte-by-byte
basis as they are transmitted/received using just 21
words of sequentially executed code. The derivation of
the FCS calculation can be found in Appendix A.

For reception all bytes received after the BOF (and after
transparency recovery) are included in the FCS calcula-
tion until the end-of-frame (EOF) byte is received (i.e.
including the FCS bytes). When the EOF is received the
calculated FCS in memory is compared to the constant
$F0B8 to determine the validity of the frame. It should be
noted that the FCS is defined as the last two bytes prior
to the EOF byte thus to remove the FCS all payload data
passes through a 2-byte FIFO buffer before being
passed as payload data to the higher layer.

Initial BOFs
BOF

($C0)
Payload Data

FCS

(2 bytes)

EOF

($C1)

Figure 3-1. Frame Format

© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

3.2.2 Frame Transparency
Prior to transmission extra escape characters are added
to ensure payload data cannot prematurely terminate the
frame by conflicting with a control byte. The application of
transparency covers all data between the BOF and EOF
bytes including the FCS. The control escape (CE) byte is
defined as $7D. Any instance of a BOF, EOF, or CE in the
data is encoded by inserting a CE byte followed by the
original data byte xored with $20.

After transparency bytes have been applied the only
instance of a BOF will be at the start of a frame thus if a
BOF is received at any point any existing data will be dis-
carded and the payload data started again.

3.2.3 Receive API
As a frame is being received the payload bytes are
passed to the payload layer using fl2plRxData. When the
end of the frame is detected, fl2plRxValid or fl2plError will

be called indicating that the frame is complete and the
payload data was valid /erroneous.

The frame can be rejected by the payload layer by calling
pl2flRxIgnore or by calling pl2flTxStart to transmit a
frame (see Transmit API). When a frame is rejected in
this manner, the receive state is reset to idle, thus
fl2plRxValid/fl2plRxError will not be called.

It should be noted that the framing layer does not time
out. If transmission is interrupted part way through a
frame then fl2plRxError will not be called until the start of
a new frame is detected. If a higher layer times out and
requests that a frame be transmitted then the receive
state is reset thus fl2plRxError will not be called.

The fl2lapMediaBusy indication is used by the lap layer to
reset the media idle test and is called before any other
receive call.

3.2.4 Receive State machine
Table 3-1 shows the Framing Layer Receive State Machine.

fl2plRxData (w=Data) A byte of payload data has been received
fl2plRxValid () The payload data is complete and has been validated.
fl2plRxError () The payload data passed is invalid.
pl2flRxIgnore () The payload layer has no interest in the frame.
fl2lapMediaBusy () A byte has been received

Figure 3-2. Framing Layer Receive API

Table 3-1. Framing Layer Receive State Machine
Current State Event Action Next State

Idle RxAvail = BOF Begin

RxAvail = Other Idle

Begin RxAvail = BOF Begin

RxAvail = EOF Idle

RxAvail = CE Reset FCS.

Add data to FCS.

Pass RxData to payload layer via FIFO buffer.

Control

RxAvail = Other Indicate data error to payload layer (fl2plRxError). Payload

Payload RxAvail = BOF Indicate data valid to payload layer (fl2plRxValid). Begin

RxAvail = EOF & FCS = valid Indicate data error to payload layer (fl2plRxError). Idle

RxAvail = EOF & FCS = invalid Idle

RxAvail = CE Add data to FCS

Pass RxData to payload layer via FIFO buffer.

Control

RxAvail = Other Indicate data error to payload layer (fl2plRxError). Payload

© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

3.2.5 Transmit API
The pl2flTxStart call starts the transmission of a frame
header immediately and resets the receive state to idle.

When the framing layer can transmit a payload byte it
calls fl2plTxData to obtain the data to transmit. The pay-
load byte is returned in w and the z flag is set if this is the

last byte to be sent. This process will be repeated until a
last indication is detected.

Finally fl2plTxComplete is called once the frame has
been completely sent (i.e. the stop bit of the EOF byte
has been sent).

3.2.6 Transmit State Machine
Table 3-2 shows the Framing Layer Transmit State Machine

Control RxAvail = BOF Indicate data error to payload layer (fl2plRxError). Begin

RxAvail = EOF XOR RxData with $20.

Add to FCS.

Pass to payload layer via FIFO buffer.

Idle

RxAvail = Other Payload

All States pl2flRxIgnore Idle

RxAvail = EOF & FCS = valid Indicate data error to payload layer (fl2plRxError). Idle

RxAvail = EOF & FCS = invalid Idle

RxAvail = CE Add data to FCS

Pass RxData to payload layer via FIFO buffer.

Control

RxAvail = Other Indicate data error to payload layer (fl2plRxError). Payload

Table 3-1. Framing Layer Receive State Machine

pl2flTxStarT () The payload layer wants to transmit a frame.

fl2plTxData (ret w=Data, z=Last) Request the next payload byte.

fl2plTxComplete () The frame has been completely sent.

Figure 3-3. Framing Layer Transmit API

Table 3-2. Framing Layer Transmit State Machine
Current State Event Action Next State

Idle pl2flTxStart () Initialize FF counter.

Send FF byte.

Begin

Begin TxEmpty & Counter-- <> 0 Send FF byte. Begin

TxEmpty & Counter-- = 0 Initialize FCS.

Send BOF byte.

Payload

© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

3.3 LAP LAYER
The primary purpose of the link-access-protocol (LAP) layer
is to manage the link to provide a connection-based bi-
directional reliable data transfer service. It manages the dis-
covery process, the connection process, and the transfer of
data.

The LAP layer implementation is secondary only with two
additional primary features:

• Support for initiating XID discovery.
• Support for sending unnumbered-information frames.
The LAP layer is implemented in the IrDA Virtual Peripheral
as two parts – payload layer and LAP layer.

3.3.1 Discovery
In order for an IrDA device to open a connection with
another IrDA device it must first know it is there and the dis-
covery process must be able to cope with multiple IrDA
devices in range. The discovery (XID) frames pass a 32-bit
device address, hint bits as to the type of device, and a
‘nickname’ string that can be displayed to the user.

Both command and response XID processes have been
implemented so that the SX can discover other devices and
be discovered itself.

The discovery process is outside of any connection and so
all frames relating to the discovery process are sent at
9600bps with a minimum turnaround of 10ms.

When a device wishes to discover devices in range it will
transmit a XID command frame indicating slot 0 of N slots
(typically 8). Every device receiving a XID command frame
will generate a random slot number between 0 and N-1 to
send a XID response frame. If the random slot number is 0
then it will transmit a reply immediately, otherwise it will wait
until it receives a XID command frame with a matching slot
number. Once the commander has sent out the N XID com-

mand frames with slot numbers from 0 to N-1 it will send its
own details in a XID command frame with a slot number of
$FF.

The hint bits and nickname field are referred to as the XID
discovery information field and are included in all XID
response frames. For XID command frames only the final
frame with a slot number of $FF will contain this field.

The 32-bit device address is a random number that is cho-
sen at start up. It is possible that 2 devices will choose the
same device address and so the XID frame can be
addressed to specific devices and can request that a new
32-bit address be generated.

The IrDA standard recommends that if a XID command
frame is received with a slot number greater that 0 while a
slot number has not been chosen (i.e. the slot 0 command
frame was missed) then a slot number should be chosen
between the received slot number and the maximum. This
complicates generating the random slot number and
requires registers to keep track of the XID process in case
more XID frames are missed. To avoid this the SX gener-
ates a random slot number every time a slot 0 XID com-
mand frame is detected and will send a XID response when
the slot number matches the chosen slot number. The SX
will respond correctly to a XID discovery as long as the first
frame of the discovery process is received correctly. If the
first frame is missed then the SX will not respond and the
discovery process will have to be repeated.

The random 32-bit device address is chosen at start-up and
will be re-generated if a XID command frame is received
that requests a new address be generated. Address con-
flicts can only detected and corrected by primary IrDA
devices. The IrDA Virtual Peripheral is classed as a second-
ary only device and so does not need to detect conflicts.
The primary service of initiating XID discovery is only pro-
vided for information gathering of other devices in range.

Payload TxEmpty Get data from payload layer (fl2plTxData).

Add to FCS.

Last flag not set.

Jump to Send.

Payload

FCS Low TxEmpty Data = FCS Low XOR $FF.

Jump to Send

FCS High

FCS High TxEmpty Data = FCS High XOR $FF.

Jump to Send

Send End

Send End TxEmpty Send EOF byte Wait End

Wait End TxEmpty Indicate complete to payload layer
(fl2plTxComplete)

Idle

(Send) Data <> BOF or EOF or CE Send data byte no change

Data = BOF or EOF or CE Store current state.

Send CE byte

Control

Control TxEmpty Recover stored state.

Send data byte XOR $20

previous state

Table 3-2. Framing Layer Transmit State Machine
Current State Event Action Next State

© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

3.3.2 Connection Set-up
Once a primary IrDA device has discovered a another
device it can open a connection with it allowing the bi-
directional transfer of reliable data. The IrDA Virtual
Peripheral is secondary only and so cannot initiate a con-
nection.

The request for connection frame (set-normal-response-
mode SNRM frame) from the primary IrDA device con-
tains the destination 32-bit address, its own 32-bit
address, a 1 byte connection address, and a list of sup-
ported connection parameters.

If the destination address matches the 32-bit IrDA Virtual
Peripheral device address then a connection acknowl-
edge frame (unnumbered-acknowledgment UA frame)
will be sent in reply indicating the actual connection
parameters. The actual connection parameters are the
highest commonly supported options between the two
devices.

Once the UA reply frame has been sent by the secondary
station it applies the determined connection parameters.
The primary station receiving the UA frame will read the
connection parameters from the frame, apply them, and
reply with a receive-ready (RR) frame at the new speed.
The connection has now been established and data can
now be transferred.

3.3.3 Connection Parameters
The main parameter that is negotiated is the baud rate.
The IrDA Virtual Peripheral supports 9600, 19200,
38400, 57600, and 115200bps. The IrDA standard also
includes optional support for 2400bps only devices, but
this is not supported by the IrDA Virtual Peripheral.

All other parameters are set to the lowest values so they
do not need to be negotiated but instead can be sent as
fixed data (as suggested in the IrDA Lite documentation).

The window size is the maximum number of unacknowl-
edged data frames that can exist at one time. The IrDA
Virtual Peripheral does not buffer the data frames and so
negotiates the window size to be 1. This means that a
station can only send 1 frame before passing control
back to the other station.

The maximum payload data size is set to the minimum
(and default) of 64 bytes to avoid having to process and
remember the maximum supported size of the initiating
station.

The minimum turnaround time should be sent as the cor-
rect time for the specific IR transceiver used. The value
transmitted is 5 ms and can be changed in the string seg-
ment of the payload layer (plSNRMParam). Related to
the turnaround time is the additional BOFs parameter.
This is a request for additional BOF characters to be sent
at the beginning of a frame to allow for a slow interrupt
response. The IrDA Virtual Peripheral does not process
or store the minimum turnaround time or the additional
BOF request from the initiating station but instead always
sends 10 ms worth of additional BOF bytes at the start of
each frame. The 10 ms time is the worst possible case so
that the IrDA Virtual Peripheral can communicate with
any IrDA device however it should be possible to reduce

this time to 5 ms and maintain compatibility. The number
of additional BOFs sent can be changed in the lap layer
(lmpMinTurnaround).

The turnaround time is the maximum time a station can
have control of the IR medium before passing control
back to the other station. For “ASYNC” speeds (speeds
up to 115200bps) the turnaround time must be 500ms.

The link disconnect threshold time is the maximum time
to wait without hearing from the remote station before
assuming that the connection has been lost. The discon-
nect time is set to the minimum of 3 seconds.

3.3.4 Data Flow
During a connection, only one frame will be sent by a sta-
tion before it passes control (permission to send a frame)
back to the other station. The passing of control is
achieved by setting the “final” bit in the command byte
and so this bit should be set for all frames. Any frames
received that do not have the final bit set will be ignored
as suggested in the IrDA Lite documentation.

One frame (S or I) will be sent from the primary station
and the control will be passed to the secondary station.
The secondary station will reply with one frame (S or I)
and pass control back to the primary station.

If there is data to be sent then an I frame will be sent. The
command byte of an I frame contains a 3 bit frame num-
ber as well a 3-bit acknowledge number. The acknowl-
edge number is used to confirm the receipt of frames
numbered up to but non including the acknowledge num-
ber. If there is no data to be sent then a S frame will be
sent. S frames do not contain data and so are not num-
bered, but do contain a 3-bit acknowledge number used
in a similar way as a I frame acknowledgment. If a error is
detected in a received frame then a S frame will be sent
in reply to explicitly reject the frame.

A connection can be maintained indefinitely without data
by use of S frames.

3.3.5 Disconnection
The connection is disconnected by an incoming discon-
nect (DISC) frame from the primary station. Upon receipt
of a DISC frame the default connection parameters will
be reinstated (9600bps, 10 ms minimum turnaround).
The secondary can send a request disconnect (RD)
frame if it wishes to disconnect which should result in a
DISC reply from the primary, however, the RD frame can
only be sent when the secondary station has control (i.e.
in its turn). The connection is also covered by a 3 second
watchdog (WD) timer. If no valid frames are received
within the 3 second timeout then the connection will be
assumed to be dead and will be handled in the same way
as for a received DISC frame.

3.3.6 Frame Structure
Figure 3-4 shows the LAP Frame Format. The address
byte consists of a 7 bit connection address and a 1 bit
command/response bit (LSB). The IrDA Virtual Periph-
eral implementation uses an 8-bit connection address
register and will only accept frames with the matching
byte in the address field. When the LAP layer is idle (i.e.
the normal-disconnect-mode (NDM) state) the connec-

© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

tion address register is set to $FF to accept broadcast
command frames and reject response or addressed
frames. When the LAP layer is initiating discovery (i.e.
the QUERY state) the connection address is set to $FE
to accept broadcast response frames and reject com-
mand or addressed frames. When connected – normal-
response-mode (NRM) state the connection address is
set to the given connect address (from the connection
request frame) with the command bit set therefore
accepting addressed command frames and rejecting
broadcast, response, and incorrectly addressed frames.

The command byte determines the frame type. There are
three basic types of command – unnumbered (U), super-
visory (S), and information (I). U commands do not relate
to reliable data and are used for tasks such as discovery

and link connection/disconnection. S commands are
used to acknowledge or reject received I frame data and
are also used to maintain the connection when there is
no data to be transferred. I frames are used to transfer
reliable data and also contain an acknowledgment for
received I frame data encoded in the command byte.

The information field is command specific. For I frames it
contains the reliable data to be transferred, for U frames
it contains parameters relating to the command, and for S
frames it will be empty (0 bytes in length).

I frame numbering for acknowledgment/reject is based
on a 3 bit frame number to protect against duplicate
frames.

Initial
BOFs

BOF

($C0)

Address

(1 byte)

Command

(1 byte)

Information

(up to 64 bytes)

FCS

(2 bytes)

EOF

($C1)

Figure 3-4. LAP Frame Format

Table 3-3. Payload Frame Types
Type Constant Command Type Description

iFrame Information Information data frame.

sRRFrame Supervisory Acknowledge I frame and receive-ready indication.

sRNRFrame Supervisory Acknowledge I frame and receive-not-ready indication.

sREJFrame Supervisory Reject I frame.

sSREJFrame Supervisory Selective reject I frame.

uUIFrame Unnumbered Unnumbered-information data frame.

uDISCFrame Unnumbered Disconnect frame.

uUARspFrame Unnumbered Response to a SNRM or DISC frame.

uNRMFrame Unnumbered SNRM or RNRM – Open or close a connection.

uTESTFrame Unnumbered Test frame.

uFRMRRspFrame Unnumbered Frame reject response frame.

uDMRspFrame Unnumbered Disconnected-mode indication response frame.

uXIDCmdFrame Unnumbered Discovery command frame.

uXIDRspFrame Unnumbered Discovery response frame.

© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

3.3.7 Implementation - Payload Layer Receive
For incoming frames the payload layer tests the connec-
tion address, and if it is correct it will inform the LAP layer
of the type of the frame. The information field will be pro-
cessed or passed (in the case of a data frame) as appro-
priate for the type of frame, and a Valid/Error message
will be sent to the LAP layer when complete.

When the LAP layer is informed of the incoming frame
type it may choose to ignore the frame by calling
lap2plRxIgnore which will cause the payload layer to
ignore the frame.

Figure 3-5 shows the Payload Layer Receive API.

If the lap layer calls lap2plRxIgnore to ignore the frame
then the payload layer will inform the framing layer that
the frame should be ignored thus no more data will be
received from the framing layer and no Valid/Error indica-
tion will be given.

The command byte is recorded by the payload layer so
that the LAP layer can examine the it once a frame has
been completed. This allows the LAP layer to gain
access to the frame numbering bits encoded in the com-
mand byte.

For I (reliable data) and UI (unreliable data) frames all
data is passed to the LAP layer using pl2lapRxIData or
pl2lapRxUIData.

For XID frames the frame information field is internally
processed by the payload layer except for the XID dis-
covery information field which is passed to the LAP layer
using pl2lapRxXIDData. The received 32-bit source
address is stored so that it can be used in a reply if the
frame is an XID command frame and the LAP layer
requests that an XID response be sent. The received 32-
bit destination address is tested to ensure it is either
broadcast or specifically destined for the IrDA Virtual
Peripheral, and the XID flags and slot number are stored
for future reference by the LAP layer. If there is any error
in the frame such as a wrong destination address or an
unsupported version then the lap layer will receive a
pl2lapRxError message. Note that the payload layer only

keeps the current source address in memory and does
not generate a list of received source addresses.

For SNRM frames the information field is internally pro-
cessed by the payload layer. The received 32-bit source
address is stored so that it can be used in a reply if
requested by the LAP layer. The received 32-bit destina-
tion address is tested to ensure it is either broadcast or
specifically destined for the IrDA Virtual Peripheral, and if
not then the lap layer will receive a pl2lapRxError indica-
tion. The received connection address is stored but not
applied (it cannot be applied until the frame has been val-
idated and the LAP layer requests that the connection be
accepted). And finally the baud rate parameter is
extracted from the received supported connection
parameters and stored for future use. When the frame is
validated the LAP layer will accept the connection and
the stored data will be used to form the connection-
accept reply.

For all other frame types the information field is ignored.

3.3.8 Implementation - Payload Layer Transmit
The payload layer provides the LAP layer with the ability
to request that a frame of a given type be sent.

When the LAP layer requests that a frame be sent it will
be sent immediately and the receive state will be reset to
idle.

pl2lapRxFrame (w=Type) A correctly addressed frame of the given type is being received.

pl2lapRxValid () The frame is complete and has been validated.

pl2lapRxError () The frame is invalid.

pl2lapRxXIDData (w=Data) Data from the XID information field

pl2lapRxIData (w=Data) Data from an I frame

pl2lapRxUIData (w=Data) Data from an UI frame

lap2plRxIgnore () The lap layer has no interest in the frame.

Figure 3-5. Payload Layer Receive API

© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

For a XID command frame with a slot number of $FF a
XID frame will be sent with the XID discovery information
field, otherwise the discovery information field will be
omitted.

A request to send an UI command frame will be followed
by requests for data using pl2lapTxUIData until there is
no more data to be sent (indicated by the last flag being
set by the LAP layer).

A lap2plSNRMAccept will cause the connection address
to be applied and a UA connection acknowledgment
frame to be sent with appropriate negotiation parameters.
This routine can only be called directly following a valid
received SNRM frame as information from the received
frame is used to transmit the UA reply frame.

The transmit I response routine differs from the I frame
receive routine in that the payload layer will internally
send the DSLAP and SLSAP bytes of the LMP layer

rather than the two bytes being passed as data (refer to
the LMP section of this document). These two bytes will
be the first two data bytes sent in the information field
and so they must have been correctly set prior to calling
lap2plTxIRsp. Once the DLSAP and SLSAP bytes have
been sent further data will be requested by use of the
pl2lapTxIData call until the last flag is set indicating that
there is no more data to send. Note that the DLSAP and
SLSAP bytes are part of the LMP layer data and as such
are of no interest to the LAP or payload layers. They are
sent by the payload layer in this manner to simplify the
LMP layer.

An XID response frame can only be send directly follow-
ing a valid received XID command frame as information
from the received frame is used to transmit the XID
response frame.

3.3.9 Implementation - LAP Layer API

The DisconnectionRequest will result in the link
being disconnected following the IrDA specifications.
When the SX has control of the link it will request discon-
nection from the primary station and the link will be for-
mally disconnected when the primary station returns a
disconnect frame. During this time no further data frames
will be accepted and so no further data will be passed to
the LMP layer. When the disconnect frame is received
any outstanding non-validated data will be rejected and
then the DisconnectIndication will be called.

lap2plTxXIDCmd (w=slot) Send an XID command frame with the given slot number.

lap2plTxUICmd () Send an UI command frame.

lap2plSNRMAccept () Apply connection address and send UA connection accept frame with appropriate
negotiation parameters.

lap2plTxSimpleRsp (w=cmd) Send a frame with the given command and with no information field.

lap2plTxIRsp () Send an I response frame.

lap2plTxXIDRsp () Send an XID response frame

pl2lapTxIData (ret w=data, z=last) Request for the next I data byte.

pl2lapTxUIData (ret w=data, z=last) Request for the next UI data byte.

pl2lapTxComplete () The frame has been completely sent.

Figure 3-6. Payload Layer Transmit API

lap2lmpConnectIndication () A LAP connection has been established.

lap2lmpDisconnectIndication () The LAP connection has been terminated.

lmp2lapDisconnectRequest () The LMP layer wishes to terminate the LAP connection.

Figure 3-7. LAP Layer Connect API

© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

The LMP layer uses reliable I frames for data transmis-
sion and reception. Received data will confirmed by a
RxValid message once both the FCS and the frame
numbering have been checked. Transmitted data will be
confirmed by a TxValid message once the remote sta-
tion has correctly acknowledged the receipt of the trans-
mitted frame.

Because the acknowledge of transmitted data can be
part of a received data frame the LMP layer may be
passed received data before the transmitted data has
been confirmed. This means that the LMP layer must be
capable of re-transmitting a frame after more incoming
data has been received.

For solid bi-directional data flow the events will occur in
the following order:

lap2lmpTxStart
lap2lmpTxData * n
lap2lmpRxData * n
lap2lmpTxValid/Error
lap2lmpRxValid/Error
lap2lmpTxStart
etc.

The application layer can request the discovery process
be initiated by calling DiscoveryRequest. If there has
been no IR detected in the past 500 ms (as required by
the IrLAP specifications) then the discovery process will
be initiated and z will be returned clear. If there has been
IR detected in the past 500 ms then the request will be
refused and z will be returned true. Any attempt to initiate
the discovery process during a connection or during a
discovery process will be rejected.

The application layer can request that a unreliable broad-
cast data (UI) frame be sent outside of a connection by
calling TxUIStart. If there has been no IR detected in the
past 500 ms (as required by the IrLAP specifications)

then the frame will be transmitted and z will be returned
clear. If there has been IR detected in the past 500 ms or
there is a connection open then the request will be
refused. The data will be requested from the application
layer as it can be sent by use of the TxUIData event. The
LAP layer does not enforce the 64 byte limit on the length
of the data within a UI frame and so it is up to the applica-
tion layer to limit the data to 64 bytes if it wants to main-
tain IrDA compliance.

All broadcast UI data frames received during the discon-
nected (NDM) state will be passed to the application
layer. Figure 3-9 shows the LAP Layer Application API..

lap2lmpConnectIndication () A LAP connection has been established.

lap2lmpDisconnectIndication () The LAP connection has been terminated.

lmp2lapDisconnectRequest () The LMP layer wishes to terminate the LAP connection.

lap2lmpRxData (w=Data) I frame data has been received.

lap2lmpRxValid () The I frame data received since last Valid/Error message has been validated.

lap2lmpRxError () The I frame data received since last Valid/Error message is invalid.

Figure 3-8. LAP Layer LMP Receive API

app2lapDiscoveryRequest (ret z=busy) Request that the discovery process be initiated.

lap2appRxUIData (w=data) Incoming UI data frame.

lap2appRxUIValid () Frame was validated.

lap2appRxUIError () Frame was invalid.

app2lapTxUIStart (ret z=busy) Request that a frame be sent.

lap2appTxUIData (ret w=data, z=last) A request for UI data to be transmitted.

lap2appTxUIComplete () The UI frame has been completely transmitted.

Figure 3-9. LAP Layer Application API

© 2000 Ubicom, Inc. All rights reserved. - 14 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

3.3.10 Implementation – LAP Layer State Machine
The IrDA Virtual Peripheral LAP layer manages the LAP
secondary-only state machine from the IrDA Lite specifi-
cation.

The implementation differs from the specification in the
following ways:

• There is no OFFLINE state (i.e. the LAP layer can al-
ways receive frames).

• The XID response to an XID command frame as stated
in Discovery section (i.e. slot 0 must be received for the
SX to respond).

• The addition of the QUERY state so the IrDA Virtual
Peripheral can initiate XID discovery following the IrDA
Lite primary state machine.

• The IrDA Virtual Peripheral will always automatically
accept an incoming connection request rather than
asking a higher layer if it should accept the connection
request.

• The ability to transmit UI command frames (NDM state
only).

Note that the payload layer automatically filters the
frames such that the LAP layer will only be informed of
frames that are correctly addressed command frames
with the final bit set.

© 2000 Ubicom, Inc. All rights reserved. - 15 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

Table 3-4. LAP State Machine
Current

State
Event Action Next State

NDM DiscoveryRequest & Media is idle Slot number = 0.

Send XID command frame.

Start slot timer.

QUERY

Send UI request & Media is idle Send a UI command frame NDM

uXIDCmd frame If the GenerateNewDeviceAddr flag is set then ask

payload layer to generate a new device address.

If received slot number = 0 the generate a random slot
number.

If received slot number = chosen slot number = 0 then
send a XID response frame.

NDM

uNRM frame Apply connection address.

Send UA frame to accept connection.

Apply connection parameters.

Initialize frame numbering registers.

Indicate connection to LMP layer.

NRM

uUI frame Pass data to application layer NDM

QUERY Timeout & slot number < 8 Increment slot number.

Send XID command frame.

Start slot timer.

QUERY

Timeout & slot number = 8 Send XID command frame with slot number of $FF NDM

uXIDRsp frame Pass data to user QUERY

NRM DisconnectRequest SCLOSE

I frame Jump to TestNr. NRM

sRR Frame RemoteBusy = false.

Jump to TestNr.

NRM

sRNR Frame RemoteBusy = true.

Jump to TestNr.

NRM

sREJ Frame or sSREJ Frame Jump to TestNr. NRM

SNRM Frame Send RD frame.

Start WD timer

SCLOSE

DISC Frame Send UA response

Apply default connection parameters.

Indicate disconnect to LMP layer.

NDM

All other frames (command, final) Send S frame NRM

Timeout Apply default connection parameters.

Indicate disconnect to LMP layer.

NDM

NRM

(TestNr)

Received Nr = NrAck Start WD Timer.

NrNotAck := NrAck.

Inform LMP layer that transmitted data has been

acknowledged if appropriate.

Jump to TestNs.

same

© 2000 Ubicom, Inc. All rights reserved. - 16 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

3.4 LMP LAYER & IAS SERVER
The IrDA Link-Management-Protocol (IrLMP) layer
serves to multiplex the IrLAP connection between a num-
ber of higher layers and/or applications using the reliable
service of the IrLAP layer. The LMP layer requires that a
LMP connection be created for every instance of a ser-
vice or application that wishes to communicate across
the link so that all the data can be correctly multiplexed to
the correct destination services/applications. The
addressing is achieved by adding a one byte destination
Link-Service-Access-Point (DLSAP) address and a one
byte source LSAP (SLSAP) to every reliable I frame.

The Information-Access-Server (IAS) allows IrDA
devices to get specific details about the high layer ser-
vices the IrDA device offers. A request for information will
consist of a class-name in text form (e.g. IrDA:IrCOMM
for IrComm) and a attribute-name in text form (e.g.
Parameters for IrComm). If the IAS server has a entry of
the correct class-name then it will respond by returning
the data associated with the requested attribute. The text
names are generally ASCII but are considered to be lan-
guage-independent byte sequences and are case sensi-
tive The IAS implementation is secondary only and as

such can reply to requests for information but cannot
request information itself.

In the IrDA Virtual Peripheral both the IrLMP layer and
the IAS have been implemented together in the one layer
referred to as the LMP layer.

3.4.1 LMP LSAP Addresses
The following services are provided:

• IAS server (LSAP = 0)
• IrComm service (LSAP = 5)

3.4.2 LMP Behavior
The IrComm service LMP state is remembered as either
connected or not connected by the use of the lmpAppL-
SAP variable. This variable holds the LSAP of the remote
service that opened the connection to the IrComm ser-
vice and if 0 the IrComm service is considered to be not
connected.

The IAS service LMP state is not stored. Any attempt to
open the IAS service is accepted and any attempt to
close it is ignored.

Any attempt to access an unknown LSAP or the IrComm
LSAP while it is not connected will result in a BadLSAP

Received Nr = NrNotAck Start WD Timer.

NrAck := NrAck – 1.

Inform LMP layer that transmitted data must be resent

if appropriate.

Jump to TestNs.

same

Received Nr = other Send RD frame.

Start WD timer

SCLOSE

NRM

(TestNs)

Received Ns = Ns Ns := Ns + 1

Inform LMP layer that received data is valid if

appropriate.

Jump to SendData.

same

Received Ns <> Ns Inform LMP layer that received data is valid if

appropriate.

Send S frame.

same

Frame was a S frame Jump to SendData same

NRM

(SendData)

LMP layer has data to send Send I frame.

NrAck := NrAck + 1.

same

LMP layer does not have data to
send

Send S frame. same

SCLOSE uRDFrame Send UA response

Apply default connection parameters.

Indicate disconnect to LMP layer.

NDM

All other frames (command, final) Send RD frame.

Start WD timer

SCLOSE

Timeout Apply default connection parameters.

Indicate disconnect to LMP layer.

NDM

Table 3-4. LAP State Machine

© 2000 Ubicom, Inc. All rights reserved. - 17 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

event which once the frame has been confirmed will
result in a LAP link disconnect.

Any received LMP command other that a “connect” or a
“disconnect” will be ignored.

3.4.3 LMP IrComm API
The LMP API provides the IrComm API to the application
layer and is described in the Application layer section of
this document.

3.4.4 LMP Implementation Notes
The IrLMP layer uses reliable I-frames and as the infor-
mation passed to/from the LAP layer is unreliable until
confirmed, the LMP implementation must be capable of
rejecting or re-transmitting data. The LMP layer imple-
mentation must be able to retransmit a frame after a
frame has been received thus all transmit and receive
resisters must be separate. Normally if the transmitted
data is not-acknowledged then the reply will be a S frame
thus no data would have been sent, however it is still
possible to receive data followed by a transmit not-
acknowledge if a frame is lost.

For solid bi-directional data flow the events will occur in
the following order:

lap2lmpTxStart
lap2lmpTxData * n
lap2lmpRxData * n
lap2lmpTxValid/Error
lap2lmpRxValid/Error
lap2lmpTxStart
etc.

For reception, all I-frame data bytes are passes to the
LMP layer. The first two bytes will be the DLSAP and the
SLSAP, followed by the higher-layer data (up to 62
bytes).

For transmission, the DLSAP and SLSAP bytes will be
transmitted by the payload layer. This allows the LMP
layer to use a single TxState value for each of the possi-
ble types of transmission thus if a retransmission is
requested then the state will remain unchanged. When
the LAP layer gives permission to send a frame the
DLSAP and SLSAP bytes are copied into the appropriate
payload registers for transmission. All data requested
from the LAP layer will consist of the higher-layer data.
Also note that if a transmitted frame is requested to be
repeated then the DLSAP and SLSAP registers in the
payload layer will have been lost and so are transferred
again.

The LAP layer will send a RxError and/or a TxError
message if required before sending a DisconnectIn-
dication thus the LMP layer does not need to do any
special processing on a DisconnectIndicaton to
inform the application layer.

3.4.5 Information Access Service
The IAS provides the required GetValueByClass service
with no optional services.

The IAS holds two classes:

• “Device” class

• “IrDA:IrCOMM” class

3.4.5.1 IAS Device Class
The IAS Device class holds two attributes:

• “DeviceName” which returns the user string “SX IrDA
IrComm Demonstration”

• “IrLMPSupport” which returns IrDA version 1 with no
additional IAS services and no additional MUX services
supported (This attribute is not requested by a Win95
connection and so has not been completely tested).

3.4.5.2 IAS IrComm Class
The IAS IrComm class holds two attributes:

• “Parameters” which returns that 3-wire raw serial or
parallel is supported (no port name is sent).

• “IrDA:IrLMP:LsapSel” which returns the LSAP of the Ir-
Comm service = 5 (This number is arbitrary, between 1
and 6F).

3.4.6 IAS Implementation Notes
The incoming strings (classname and attribute) are made
up of a one byte length followed by length bytes of case-
sensitive text. All the strings that the IrDA Virtual Periph-
eral needs to check for are of different lengths and so the
IrDA Virtual Peripheral uses the length byte to determine
which string to test for. If the string does not match then a
error reply will be generated with an appropriate error
number indicating the cause of the error.

3.5 APPLICATION LAYER
3.5.1 IrComm
The IrComm interface provides a reliable bi-directional
virtual COM/LPT interface. The IrComm interface can be
considered to be that of a UART with a cable connecting
it to the UART of the other station.

The IrDA Virtual Peripheral does not buffer frames and
so the API is not quite this ideal. All data sent must be
able to be resent and all data received must be able to be
discarded if requested. Up to 62 bytes of data can be
sent/received before being confirmed.

© 2000 Ubicom, Inc. All rights reserved. - 18 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

If the application was simplex (one direction only), for
example a printer, then the data could be buffered as the
SX would be capable of buffering a 62 byte frame. It is
not, however, capable of buffering both a 62 byte transmit
and a 62 byte receive frame.

The application layer cannot call the LMP layer. Instead
the LMP layer will call the “event handlers” in the applica-
tion layer as specified in Figure 3-10. An event handler
should be in the following form:

lmp2appRxCommData
bank ApplicationBank ;Correct local register bank
... ;Event handling code
retp ;Paged return

For reception the LMP layer will call the application
layer’s lmp2appRxCommData event handler with the
data byte in the w register. The application is free to pro-
cess the byte however it must return when it has finished
processing the data and cannot hold up the CPU waiting
for something to happen. This event handler will be
called for every IrComm data byte in the incoming frame
(up to 62 times) before the LMP layer calls

lmp2appRxCommValid to validate the data or
lmp2appRxCommError to reject the data.

For transmission the LMP layer will ask if there is any
data to be sent by calling lmp2appTxCommStart. The
application layer should return z clear if there is data to
send. For example:

lmp2appTxCommStart
bank ApplicationBank ;Correct local register bank
test DataCounter ;Z is set if no data to send
retp ;Z is clear if data to send

If the application layer indicates that there is data to be
sent then the LMP layer will call lmp2appTxCommData
when it is ready to transmit the first byte of data. The
application layer must return with w containing the data
byte to be sent and z indicating if there is more data to be
sent. If z is true then this is the last byte to be sent and no

more data will be requested. If z is false then another
byte will be requested when the LMP layer is ready to
accept it. The LMP layer will accept up to 62 bytes of
data for a frame thus the 62nd byte will be considered to
be the last byte by the LMP layer regardless of the z flag.

lmp2appTxCommData
bank ApplicationBank ;Correct local register bank
mov w, DataPointer ;w = Pointer to register with data
inc DataPointer ;increment pointer to next register
mov FSR, w ;apply register pointer
mov w, INDF ;w = data to send
bank ApplicationBank ;ensure correct register bank
dec DataCounter ;Z is set if no more data to send
retp ;Z is clear if more data to send

lmp2appRxCommData (w=data) Incoming IrComm data.

lmp2appRxCommValid () Data bytes passed since last Valid/Error message have been validated.

lmp2appRxCommError () Data bytes passed since last Valid/Error message are erroneous.

lmp2appTxCommStart (ret z=none) A request to find out if the application has IrComm data waiting to be
sent.

lmp2appTxCommData (ret w=data, z=last) A request for IrComm data so that it can be transmitted.

lmp2appTxCommValid () All data passed since last Valid/Error message were acknowledged as
received by the remote station.

lmp2appTxCommError () All data passed since last Valid/Error message were discarded and will
need to be sent again.

Figure 3-10. IrComm API

© 2000 Ubicom, Inc. All rights reserved. - 19 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

No indication is given when a frame has been sent. The
lmp2appTxValid or lmp2appTxError handlers will
not be called until the remote station responds with an
acknowledge. This poses a problem in that data can be
received before the transmitted data has been acknowl-
edged and so transmitted data may need to be resent
after more data has been received. Normally if the trans-
mitted data is not-acknowledged then the reply will be a
S frame thus no data would have been sent, however it is
still possible to receive data followed by a transmit not-
acknowledge if a frame is lost.

For solid bi-directional data flow the events will occur in
the following order:

lmp2appTxCommStart
lmp2appTxCommData * n (up to 62)
lmp2appRxCommData * n (up to 62)
lmp2appTxCommValid/Error
lmp2appRxCommValid/Error
lmp2appTxCommStart
etc.

If the connection is terminated or times-out while there is
unconfirmed data then the appropriate error message will
be passed.

3.5.2 Discovery
The XID discovery process can be initiated by the appli-
cation layer by calling DiscoveryRequest.The applica-
tion should call the lap layer in the following way:

...
page app2lapDiscoveryRequest ;Set page bits for call
call app2lapDiscoveryRequest ;call lap layer
bank ApplicationBank ;change to correct local bank
...

The request will be accepted if there is no connection
and there has been no IR detected in the past 500ms.
Acceptance will be indicated by z being returned false
and refusal by z being returned true. The XID Information
field will not be passed to the application layer but will be
displayed out the debug port if the ShowXIDInfo debug
has been enabled.

© 2000 Ubicom, Inc. All rights reserved. - 20 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

3.5.3 UI Transport
The unnumbered-information (UI) service provides a
broadcast unreliable connectionless data service for the
application layer..

The reception of a UI data frame works in the same way
as for IrComm data. The LAP layer will call the applica-
tion layer’s lap2appRxUIData event handler with the
data byte in the w register. The application is free to pro-
cess the byte however it must return when it has finished
processing the data and cannot hold up the CPU waiting
for something to happen. This event handler will be
called for every data byte in the incoming frame (up to 64
times) before the LAP layer calls lap2appRxUIValid to
validate the data or lap2appRxUIError to reject the
data.

For transmission the application layer must call the LAP
layer’s app2lapTxUIStart function to request that a UI
frame be sent. The LAP layer can only send a UI com-
mand frame outside of a connection and only if no IR has
been detected in the past 500ms. The LAP layer will
return z false if it will send the frame or z true if it refuses
the request.

If the frame can be sent the LAP layer will request the
data as it can send it by calling the application layer’s
lap2appTxUIData event handler. This function return
with w containing the data byte to be sent and z indicat-
ing if there is more data to be sent. If z is true then this is
the last byte to be sent and no more data will be
requested. If z is false then another byte will be
requested when the LAP layer is ready to accept it. When
the frame has been completely sent by the physical layer
the LAP layer will call the lap2appTxUIComplete
event handler to indication completion. Note that the LAP
layer does not enforce the 64 byte limit on the length of
the data within a UI frame and so it is up to the applica-
tion layer to limit the data to 64 bytes if it wants to main-
tain IrDA compliance.

The application should call the lap layer in the following
way:

...
page app2lapTxUIStart;Set page bits for call
call app2lapTxUIStart;call lap layer
bank ApplicationBank ;change to correct local bank
...

lap2appRxUIData (w=data) Incoming UI data frame.

lap2appRxUIValid () Frame was validated.

lap2appRxUIError () Frame was invalid.

app2lapTxUIStart (ret z=busy) Request that a frame be sent.

lap2appTxUIData (ret w=data, z=last) A request for UI data to be transmitted.

lap2appTxUIComplete () The UI frame has been completely transmitted.

Figure 3-11. UI Transport API

© 2000 Ubicom, Inc. All rights reserved. - 21 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

4.0 Sample Applications Using the Virtual Peripheral
The IrDA Virtual Peripheral can be used in two different
scenarios: for communication with another SX running
the Virtual Peripheral or with a Windows 95 computer (or
similar) with an IrDA port. The next two sections describe
three demonstrations of the Virtual Peripheral in these
two scenarios.

Note:Since the Virtual Peripheral complies with the IrDA
standard it will communicate with any other IrDA compli-
ant device (such as a 3Com PalmPilot or digital camera).
For this to be useful, the other device would also need to
support IrComm (there are many high protocols at the top
level of the IrDA stack and all are optional) or the SX
would need to support the particular protocol used by the
device.

4.1 SX TO WINDOWS COMMUNICATION (IRCOMM)
4.1.1 Transparent IrComm Application Description
The ‘Transparent IrComm’ sample application connects
the Debug UART port to the IrComm virtual COM port of
a PC using the IrDA IrComm reliable connection based
protocol. Once a connection has been established by the
PC any characters sent down the PC’s virtual com port
will appear out the SX Debug port and vice-versa.

The application does not buffer the data and does not
send the valid/error messages out the debug port. In the
rare case that an error occurs both the corrupt data and
the valid data will be displayed. All frame errors, transmit
not-acknowledges, and receive frame numbering errors
will still be shown on the ‘ERR’ LED.

The application cannot transmit data until it has control of
the IR link and so any characters received down the
debug port for transmission must be stored until trans-
mission is possible. To achieve this the application
includes an 8-byte buffer for data pending transmission.

4.1.2 SX to PC IrComm Application Description
The ‘SX to PC IrComm’ sample application will respond
to user commands entered into a terminal window con-
nected to the virtual IrComm port of the PC. The SX will
respond as follows:

• ‘?’ will return the text string ‘SX IrComm Terminal’ to the
user.

• ‘c’ will return the value of port c (raw byte) to the user.
• ‘r’ will return the 128 byte general register file (raw

bytes) to the user.
The application is completely reliable in that it will cor-
rectly discard invalid received data and will correctly re-
send any transmitted data as requested.

4.1.3 IrComm requirements
• MS Windows 95/98 machine.
• Infrared IrDA port.
• Infrared drivers installed

(The Windows 95 IrDA driver can be found at
www.microsoft.com/windows/95downloads/).

• A serial connection to the SX if debug is of interest (The
serial cable should be a straight-through cable with at
least TX, RX, and GND connections.

• Windows terminal software capable of connecting to
the IrDA virtual com port.

Note:Windows 95 HyperTerminal can only connect to
COM1-4 and if the PC has a physical COM4 then the vir-
tual com port will be higher.

4.1.4 IrComm Operation
• Double-click on the “Infrared” icon in control panel to

show the Infrared window.
• Under ‘Options’ ensure that ‘Search for devices in

range” is selected (typically every 3 seconds).
• Under ‘Options’ note the ‘Providing application support’

virtual LPT and COM port numbers.
• Open a terminal program for the debug on the appro-

priate COM port at 115200,n,8,1, no handshaking.
• Power up the SX. Power is indicated by the ‘PWR’

LED.
• The Infrared monitor should indicate that there is a de-

vice in range called ‘SX IrComm Device’
• The IR RX indication LED should be indicating received

data about every 3 seconds. The IR TX indication LED
should flash at a random interval into the RX phase in-
dicating a reply in a random slot number.

• Open another terminal program for the IrDA virtual com
port. Use the ‘application support’ COM port number
noted from the Infrared monitor with any parameters
(they are irrelevant). Note that Windows does not make
these virtual ports available to a DOS window.

• The Infrared monitor should say ‘Communicating with
– Name: SX IrComm Device, Description: SX IrDA Ir-
Comm Demonstration’, ‘Good at 115.2 kbps’.

• If the ‘ShowConnect’ debug is enabled in the SX code
then the debug window will show a ‘[‘when the connec-
tion has been established and a ‘]’ when the connection
has been terminated or lost.

• If the ‘Transparent IrComm’ application code is being
used on the SX then anything entered into the virtual
COM port terminal window will appear in the debug ter-
minal window and vice-versa.

• If the ‘SX 2 PC IrComm’ application code is being used
on the SX then the SX will respond to a ‘?’ (in the virtual
COM port terminal window) by returning the text string
‘SX IrComm Terminal’, a ‘c’ by returning the value of
port c, and to a ‘r’ by returning the 128 byte register
dump.

• Connection will be maintained until the virtual COM
port is closed or the devices cannot see each other for
more than 3 seconds.

• Another interesting test is to install a printer driver in
windows connected to the virtual LPT port. With the
‘Transparent IrComm’ application, all the graphical
printer data will be sent out the debug port of the SX.

© 2000 Ubicom, Inc. All rights reserved. - 22 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

4.2 SX TO SX COMMUNICATION
4.2.1 SX to SX Application Description
The ‘SX 2 SX’ sample application allows SX devices to
initiate XID discovery and send unreliable broadcast data
packets. The SX is controlled by commands received
from the debug port as follows:

• ‘d’ will start the discovery process
• ‘c’ will broadcast the value of port c (raw byte).
• ‘s’ will broadcast a hello string.
The SX will respond to the command with a ‘^’ on the
debug port if it has accepted the request or a’!’ if it has
refused the request. A request will be refused if IR com-
munication has been detected in the past 500 ms (as
required by the IrDA IrLAP specification to prevent colli-
sions).

Note that this connectionless protocol does not require
the LMP layer and could be implemented with much sim-
plified LAP and payload layers freeing up over half the
code space.

4.2.2 Requirements
• Two SX boards (at least) each with a serial connection

to a PC through the debug ports.
Note:The serial cable should be a straight-through cable
with at least TX, RX, and GND connections.

4.2.3 Operation
• Open a terminal program on the appropriate physical

COM port at 115200,n,8,1, no handshaking on each of
the computers.

• Power up the SX boards. Power is indicated by the
‘PWR’ LED.

• Press ‘d’ on one computer to request that the discovery
process be initiated. The SX should respond with a ‘^’
followed by the text names of all the IrDA devices in
range. If a ‘!’ is returned then other IR communication
has been detected so the request cannot be accepted.

• Observe the LEDs during the discovery process. The
initiating SX’s TX indication LED should be flickering for
about one second and any responses should be seen
with the RX indication LED. The response will occur at
different intervals through the transmission process
each time as a different random reply slot will have
been chosen by the responder.

• Press ‘c’ on one computer to request that the contents
of port c be broadcast. The SX should respond with a
‘^’ and all other SX devices in range should display the
received byte. If a ‘!’ is returned then other IR commu-
nication has been detected so the request cannot be
accepted.

© 2000 Ubicom, Inc. All rights reserved. - 23 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

5.0 Serial Port / Debug
The demonstration PCB includes a RS232 serial port for
debug and external communication. The UART-Virtual
Peripheral supports full duplex communication at
115200bps (1 start bit, no parity, 1 stop bit) with no hand-
shaking (RTS/CTS hand-shaking is supported by the
hardware but has not been implemented in software).

A data byte can be transmitted using the following code:
mov UartTxData, w
setb UartTxStart

The register and bit are both global (no bank instruction
needed). Debug data is the same as UartTxData and
DebugSend is the same as UartTxStart. When the

data byte has been sent the global UartTxEmpty flag
will be set.

If the UART is idle then the transmission will start at the
next timer interrupt (108 cycles @ 50MHz), otherwise it
will start once the current byte is finished. There is no
additional buffering and so a second byte cannot be sent
until the first byte has started transmission (indicated by
UartTxStart being cleared).

When a data byte is received the global UartRxAvail
flag will be set. The received data byte is in the UartRx-
Data register in the IsrBank (not global).

5.1 DEBUG MACROS
Table 5-1 shows three debug macros for showing debug
data.

The first parameter is a constant and must be 1 for the
macro to take affect.

Debug Information
The debug control registers in ‘PROJECT.SRC’ can be
changed to show more debug information.

Table 5-1. Debug Macros
Name Description Example Affects Words Cycles

Debug Output the value in w debug 1 none 2 2

Debugl Output a literal value debugl l, ‘!’ w 3 3

Debugf Output the given register debugf 1, reg w, z 3 3

© 2000 Ubicom, Inc. All rights reserved. - 24 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

6.0 Hardware
The hardware consists of the following main aspects:

• Ubicom SX communications controller
• IR transceiver interface
• RS232 serial interface
• Port C break-out interface
• Indication LEDs
• Power supply
The IR transceiver circuit is based on the HP HSDL1001
transceiver. The current limiting resistor for the trans-
ceiver LED was chosen to maximize the LED current and
thus the effective range of the link while operating at
115200bps. The LED is capable of handling an average
current of 100mA and a peak current of 1000mA. The
pulse will always be 2.16us (108 clock cycles @ 50MHz)
in length regardless of the baud-rate and the minimum bit
time is 8.64us (115200bps = 4*108 clock cycles @
50MHz). The worst case character ‘0’ consists of 1 start
pulse, 8 data pulses, and one stop no-pulse thus the
worst case average current percentage of peak current is
22.5% (2.16us / 8.64us * 9/10bits). The voltage drop
across the LED varies with the LED current and as such
the resistor value is hard to calculate for a desired current
greater than the typical application information given in
the data sheet. It was chosen to use four 22Ω 0.125W
resistors in parallel to give an effective resistance of 5.5Ω
with a maximum power dissipation of 0.125W. In one of
the prototypes the peak LED current was measured to be
454mA (2.52V / 5.556Ω) thus making the worst-case
average current 102.15mA (454mA * 22.5%) and the
worst-case average power dissipation of 257.42mW
(2.52V * 102.15mA). The LED current is acceptable how-
ever the current will be susceptible to component toler-
ances and care must be taken. The resistor power
dissipation is not a cause for concern due to the half-
duplex nature of the communications reducing the
longer-term average power dissipation.

It should also be noted that the IR transceiver LED
timing is completely software controlled. If the SX
device leaves the LED on continually then the IR
transceiver may be permanently damaged as it will
be operating at 4.5 times its absolute maximum aver-
age current rating.

The RS232 interface provides a 115200bps full-duplex
serial interface with RTS/CTS hardware hand-shaking. It
is based on a MAX232 compatible charge-pump voltage
converter to provide the voltage conversion and is con-
troller by bits 0 to 3 of port B.

The port C break-out interface provides access to port C
of the SX device (8-bit bi-directional) and well as the
power supply rails.

The power supply consists of a bridge rectifier and a lin-
ear voltage regulator to allow the circuit to operate of a
range of power sources. The regulator has a typical drop-
out voltage of 2V thus for a DC source the voltage should
be greater than 8.4V (5V rail + 2V regulator + 1.4V
bridge).

The power supply de-coupling capacitors are of high
importance as the HP transceiver is highly susceptible to
power supply noise. With insufficient power supply de-
coupling the transceiver will give falsely indicate that a
pulse has been received when the RS232 charge pump
spikes the power supply rail. The transceiver is protected
by a 150uF low ESR tantalum capacitor (C2) and a
100nF X7R ceramic capacitor (C9). C2 is shown in the
circuit diagram as being part of the power supply circuit
however it is intended primarily to protect the IR trans-
ceiver and must be placed as close as practicable to the
transceiver.

The port C breakout has the following pinout (looking
down on the pins) where the +5V pin is pin 1:

GND

C6 C5

C3

C2 C1

C0 +5V

C4

C7

© 2000 Ubicom, Inc. All rights reserved. - 25 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

7.0 Appendix A - Frame Check Sequence (FCS)
The FCS is a 16-bit CCITT CRC covering the payload data before transparency is applied (i.e. FCS must also be trans-
parent) as described on pages 113-116 of IrLAP.

• The FCS is initialized to $FFFF.
• For transmission the complement of the FCS is sent.
• For reception the FCS of the data including the FCS bytes will result in $F0B8 for a valid frame.

7.0.1 Basic FCS Algorithm
X = FCS-Low xor DATA
FCS-Low = F(X)-Low xor FCS-High
FCS-High = F(X)-High

Table 7-1. Virtual Table Algorithm F(X)

X = X xor (X << 4)
F(X)-High = X xor (X >> 5)
F(X)-Low = (F(X)-High >> 4) xor (X << 3)

<< N = Shift left N bits (does not wrap around)
>> N = Shift right N bits (does not wrap around)

7.0.2 Final FCS Algorithm
X = FCS-Low xor DATA
X = X xor (X << 4)
A = X xor (X >> 5)
FCS-Low = (A >> 4) xor (X << 3) xor FCS-High
FCS-High = A

The FCS-Low variable is used to hold temporary variable X resulting in:

FCS-Low = FCS-Low xor DATA
FCS-Low = FCS-Low xor (FCS-Low << 4)
A = FCS-Low xor (FCS-Low >> 5)
FCS-Low = (A >> 4) xor (FCS-Low << 3) xor FCS-High
FCS-High = A

Bit Algorithm
15 X7 xor X3

14 X6 xor X2

13 X5 xor X1

12 X4 xor X0

11 X3

10 X7 xor X3 xor X2

9 X6 xor X2 xor X1

8 X5 xor X1 xor X0

7 X4 xor X0

6 X3

5 X2

4 X1

3 X7 xor X3 xor X0

2 X6 xor X2

1 X5 xor X1

0 X4 xor X0

© 2000 Ubicom, Inc. All rights reserved. - 26 - www.ubicom.com

AN16 SX IrDA Virtual Peripheral Implementation

8.0 Appendix B – Circuit Diagram

1
2

3
4

ABCD

4
3

2
1

D C B A

R
T

C
C

1
V

dd
2

V
ss

4

R
A

0
6

R
A

1
7

R
A

2
8

R
A

3
9

R
B

0
10

R
B

1
11

R
B

2
12

R
B

3
13

R
B

4
14

R
B

5
15

R
B

6
16

R
B

7
17

R
C

0
18

R
C

1
19

R
C

2
20

R
C

3
21

R
C

4
22

R
C

5
23

R
C

6
24

R
C

7
25

O
SC

2
26

O
SC

1
27

/M
C

L
R

28

IC
2

SX
28

+
5V

R
2

10
k SW

1

R
E

SE
T

R
C

0
R

C
1

R
C

2
R

C
3

R
C

4
R

C
5

R
C

6
R

C
7

+
C

7
1u

F

+
C

8
1u

F

+
C

4
1u

F

+

C
5

1u
F

+

C
6

1u
F

+
5V

+
5V

+
5V

C
N

1

PS
U

R
C

0
R

C
1

R
C

2
R

C
3

R
C

4
R

C
5

R
C

6
R

C
7

1 2 3 4 5 6 7 8 9 10

C
N

4

PO
R

T-
C

X
1

R
E

SO
N

A
T

O
R

D
3

R
X

D
4

T
X

D
5

C
O

N

D
6

E
R

R

R
4

33
0R

R
5

33
0R

R
6

33
0R

R
7

33
0R

R
A

0

R
A

1

R
A

2

R
A

3

R
A

0
R

A
1

R
A

2
R

A
3

C
1+

1

V
+

2
C

1-
3

C
2+

4

C
2-

5

V
-

6

T
2o

ut
7

R
2i

n
8

R
2o

ut
9

T
2i

n
10

T
1i

n
11

R
1o

ut
12

R
1i

n
13

T
1o

ut
14

G
N

D
15

V
C

C
16

IC
3

H
IN

23
2

1 6 2 7 3 8 4 9 5

C
N

3

U
A

R
T

U
R

T
S

U
T

X
U

C
T

S

U
R

X

T
X

R
T

S
R

X

C
T

S

R
X

R
T

S
T

X

C
T

S

+
5V

D
2

PW
R

R
3

33
0R

+
5V

C
3

0.
1u

F

+
5V A

C
1

A
C

2

+
3

-
4

D
1

B
R

ID
G

E

IN
1

GND
2O

U
T

3

IC
1

78
05

+
C

1
47

uF

+
5V

+
C

2
15

0u
F

R
1

33
k

+
5V

O
SC

1
O

SC
2

V
dd

V
ss

C
N

2

SX
-K

E
Y

U
T

X

U
R

X
U

R
T

S

U
C

T
S

SD
1

V
cc

3

R
X

D
4

G
N

D
5

T
X

D
6

L
E

D
C

7
L

E
D

A
8

IR
1

H
SD

L
10

01

IR
R

X

IR
T

X
C

9
0.

1u
F

+
5V

+
5V

R
11

22
R

R
10

22
R

R
9

22
R

R
8

22
R

+
5V

IR
R

X
IR

T
X

P L A C E C 2 A S C L O S E

+
5V

© 2000 Ubicom, Inc. All rights reserved. - 27 - www.ubicom.com

SX IrDA Virtual Peripheral Implementation AN16

9.0 Appendix C – Bill of Materials
Qty Ref Description

Resistors

4 R8-R11 22R, 1%, 0.125W, 1206 Package

5 R3-R7 330R, 1%, 0.125W, 1206 Package

1 R2 10K, 1%, 0.125W, 1206 Package

1 R1 33K, 1%, 0.125W, 1206 Package

Capacitors

2 C3,C9 100nF, 50V, X7R Ceramic, 1206 Package

5 C4-C8 2.2uF, 16V, Tantalum, 3216 Package

1 C1 47uF, 16V, Low ESR, Tantalum, 7343 Package

1 C2 150uF, 6.3V, Low ESR, Tantalum, 7343 Package

Semiconductors

1 D1 1B01S 1A Bridge Rectifier (Surface Mount)

3 D3,D4,D6 HP HSMS-T400 Red LED (3528 Package)

1 D5 HP HSMY-T400 Yellow LED (3528 Package)

1 D2 HP HSMG-T400 Green LED (3528 Package)

1 IC1 MC7805CD2T 5V 1.5A Regulator (D2PAK Package)

1 IC2 SX28AC/SO (SOIC Package)

1 IC3 HIN232CB Dual RS232 Transceiver (SOIC Package)

Other

1 X1 50Mhz Resonator (Surface Mount)

1 SW1 4mm SPNO Push Button (Surface Mount)

1 CN3 9 pin Female D Connector, Right angle PCB mount

1 CN1 2.5mm PCB mount DC Socket

1 CN2 4 pin SIL Header

1 CN4 2x5 pin DIL Header

© 2000 Ubicom, Inc. All rights reserved. - 28 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043
E-Mail: sales@ubicom.com

Web Site: ubicom.com
Tel.: (650) 210-1500
Fax: (650) 210-8715

Lit #: AN16-02

AN16 SX IrDA Virtual Peripheral Implementation

