Nikolai Golovchenko says:
Final release! :)
;**********************************************************************
;By Nikolai Golovchenko
;24 BIT FLOATING POINT SQARE ROOT (MICROCHIP format, see AN575)
;
;Input:
; AARGB0 - high byte with sign bit
; AARGB1 - low byte
; AEXP - exponent 2^(AEXP - 127)
;Output:
; AARGB0-1, AEXP - 24 bit floating point
;Temporary:
; BARGB0-1, BEXP - temporary for result
; TEMPB0-1
; LOOPCOUNT - counter
;
;ROM: 85 instructions
;RAM: 9 bytes
;
;Timing (includes call and return)
;8 cycles best case
;3+3+18+8*28-2+8*23-2+7+3= 438 cycles worst case
;**********************************************************************
;NOTES: 1)Square root is taken on absolute value of the number
; (sign bit is ignored)
; 2)Rounding not implemented yet
;**********************************************************************
FPSQRT24
;Normalize input
;1)Check for zero input - if zero then exit
;2)Change sign to 1 and use sign bit as explicit MSB
;3)Divide BEXP = BEXP / 2
;4)If AEXP can be divided by 2 (AEXP<0>=1) then
;BARGB1 = 1, AARGB<0-1> << 1 and find 15 more bits
;5)Else find 16 more bits
mov W, AEXP ;if zero input then return
snb $03.2
retw $00
clr BARGB0 ;set up all used
clr BARGB1 ;temporary registers
clr TEMPB0 ;
clr TEMPB1 ;
setb AARGB0.7 ;make MSB explicit and ignore mantissa sign
;sqrt(2^E*M)=2^(E/2)*sqrt(M)
;we will align mantissa point above MSb. This is
;equivalent to division by 2. Or,
;sqrt(2^E*M)=sqrt(M/2)*2^((E+1)/2)
;new exponent is (E+1)/2
;new mantissa is M/2 (not changed, just new point position)
;divide (bexp+1) by 2. bexp is (eb + 127), where eb=-126.128!
;eb/2 is rounded to minus infinity!
mov BEXP, W ;copy aexp to bexp
dec BEXP ;ensure required round mode
clrb $03.0 ;divide by 2
rr BEXP ;
mov W, #$40 ;correct bias after division (J: was 64)
add BEXP, W ;
;if (E+1)/2 result has a remainder, then multiply mantissa by 2
;(left shift)
sb AEXP.0
jmp FPSQRT24a
rl AARGB1 ;(carry was zero)
rl AARGB0
setb BARGB1.0 ;set first bit of current result
;and discard MSb of mantissa (we
;used it already by setting first bit)
FPSQRT24a
;First find 8 bits of result. This will shift AARGB0 - AARGB1 to TEMPB1
;Then only zeros will be fed instead of AARGB0
mov W, #$08 ;loop counter (J: was 8)
mov BARGB2, W ;
FPSQRT24b
mov W, #$40 ;substract test bit from
sub AARGB0, W ;current lowest byte.
;it works also exactly
;like $C0 addition for the
;addition branch.
mov W, BARGB1 ;load accumulator with
;current result LSB
snb TEMPB0.7
jmp FPSQRT24b_add
sb $03.0
movsz W, ++BARGB1
sub TEMPB1, W
mov W, #$01 ;(J: was 1)
sb $03.0
sub TEMPB0, W
jmp FPSQRT24b_next
FPSQRT24b_add
snb $03.0
movsz W, ++BARGB1
add TEMPB1, W
mov W, #$01 ;(J: was 1)
snb $03.0
add TEMPB0, W
FPSQRT24b_next
rl BARGB1 ;shift result into result bytes
rl BARGB0
rl AARGB1 ;Shift out next two bits of input
rl AARGB0 ;
rl TEMPB1 ;
rl TEMPB0 ;
rl AARGB1 ;
rl AARGB0 ;
rl TEMPB1 ;
rl TEMPB0 ;
decsz BARGB2 ;repeat untill 8 bits will be found
jmp FPSQRT24b
;Find other 7 or 8 bits. Only zeros are fed instead of AARGB0
;Repeat untill MSb of result gets set
FPSQRT24d
snb BARGB1.0 ;if Temp sign is positive, than jump to subtraction
jmp FPSQRT24d_sub ;(previous result bit is inverted sign bit,
;Tempb07 can not be used instead, because
;it may overflow)
;after LSBs addition ($00 + $C0 = $C0) C=0,
;so we just continue adding higher bytes,
;keeping in mind that LSB=$C0 and C=0
mov W, BARGB1
add TEMPB1, W
mov W, BARGB0
snb $03.0
movsz W, ++BARGB0
add TEMPB0, W
jmp FPSQRT24d_next
FPSQRT24d_sub
clrb $03.0 ;simulate borrow ($00 - $40 = $C0, C=0)
movsz W, ++BARGB1
sub TEMPB1, W
mov W, BARGB0
sb $03.0
movsz W, ++BARGB0
sub TEMPB0, W
FPSQRT24d_next
rl BARGB1 ;shift result into result bytes
rl BARGB0
setb $03.0 ;Shift out next two bits of input
rl TEMPB1 ;(set carry before each shift to
rl TEMPB0 ;simulate $C0 value)
setb $03.0 ;
rl TEMPB1 ;
rl TEMPB0 ;
sb BARGB0.7 ;repeat untill all 16 bits will be found
jmp FPSQRT24d
;flag C, TEMPB1 - TEMPB0 contain current input that may be used to find 17th bit for rounding
;Copy BARG to AARG
mov W, BEXP
mov AEXP, W
mov W, BARGB0
mov AARGB0, W
mov W, BARGB1
mov AARGB1, W
clrb AARGB0.7 ;clear sign bit (overwrites explicit MSB, which is always one)
retw $00
;**********************************************************************
;Last updated 21Nov00
| file: /Techref/scenix/lib/math/sqrt/fpsqrt24_sx.htm, 6KB, , updated: 2004/6/10 14:40, local time: 2025/10/24 15:25,
216.73.216.188,10-3-157-36:LOG IN
|
| ©2025 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://www.ecomorder.com/Techref/scenix/lib/math/sqrt/fpsqrt24_sx.htm"> SX Microcontroller Math Method 24 Bit Floating Point Square Root</A> |
| Did you find what you needed? |
Welcome to ecomorder.com! |
|
The Backwoods Guide to Computer Lingo |
.